Partial Evaluation and Normalisation by Traversals

Joint work by Daniil Berezun* and Neil D. Jones’

January 23, 2016

Game semantics re-examined. A starting point: the game semantics for PCF can be thought of as a PCF
interpreter. In game semantics papers [I, 2, B, 4, Bl [6] [12], T3], 4] the denotation of an expression is a game
strategy. When played, the game results in a traversal’l Ong’s recent paper [I4] normalises a simply typed
A-expression using traversals.

A surprising consequence: it is possible to build a lambda calculus interpreter with none of the traditional
implementation machinery: S-reduction; environments binding variables to values; and “closures” and “thunks”
for function calls and parameters. (This was implicitly visible in early work on full abstraction for PCF.)

A new angle on game semantics: It looks very promising to study its operational consequences. Further,
this may give a new line of attack on an old topic: semantics-directed compiler generation [T, [16].

An idea: specialise a traversal-based normaliser. Ong’s algorithm [I4] is defined by structural recursion
on the syntax of (the eta-long form of) a A-expression M. Consequence: the algorithm can be specialised with
respect to the sub-A-expressions of M. (Specialisation is also known as partial evaluation, see [9].)

An intermediate step: a low-level semantic language LLL. A partial evaluator, given a program p and
the static portion s of its input data, will precompute the parts of p’s computation that depend only on s, and
generate residual code for all other parts of p. In the current context: specialisation is used to factor a given
traversal algorithm t¢rav : A — Traversals into two stages:

LLL

trav = travgen ;[|*** where travgen : A — LLL and [| : LLL — Traversals

The specialised traversal-builder is a residual output program in language LLL. The output program contains
no lambda-syntax; only target code to construct the traversal.

Traversals for As‘mplvtyped,

We programmed Ong’s traversal algorithm in both HASKELL and SCHEME. The HASKELL version includes
typing (Algorithm W, given user-defined types for free variables); conversion to eta-long form; the traversal
algorithm itself; and construction of the residual A-expression. The SCHEME version is (at the time of writing)
nearly in form suitable for automatic specialisation. We will use the system UNMIX (Sergei Romanenko).

We have implemented an LLL-generator. Given an input A-expression M, the generator produces as output
an LLL program py; that, when run, will yield the traversals of M. Symbolically: [M] = [[par]]-

A well-known fact: the traversal of M may be much larger than M. (By Statman’s results it may be larger
by a “non-elementary” amount!). It is possible, though, to construct pys so |pa| = O(|M]), ie., M’s LLL
equivalent has size that is only linearly larger than M itself.

For specialisation, all calls of the traversal algorithm to itself that do not progress from one M subexpression
to a proper subexpression are annotated as “dynamic”. The motivation is increased efficiency: no such recursive
calls in the traversal-builder will be unfolded while producing the generator; but all other calls will be unfolded.

The current implementation regards LLL as a subset of SCHEME, so the output pj; is currently produced in
the form of a SCHEME program. (This will soon be changed, replacing SCHEME by a tiny subset of HASKELL.)

Traversals for A¥"vPed, A traversal algorithm for untyped M-expressions M has been implemented in HASKELL.
It is more complex than Ong’s evaluator, using four different kinds of back pointers. The net effect is that an
arbitrary untyped A-expression can be translated into LLL. A correctness proof is pending.

As with Ong’s evaluator, this algorithm is also defined by structural recursion on its input A-expression’s
syntax. Current work: apply partial evaluation to the traversal algorithm for untyped A-expressions.

Next steps: (a) More on languages, partial evaluation and implementation. (b) Find a way to separate
programs from data. Regard a computation of A-expression M on input d as a game between the LLL-codes for
M and d. (¢) Study the utility of LLL as an intermediate language for a semantics-directed compiler generator.

*JetBrains and St. Petersburg State University (Russia)

TDIKU, University of Copenhagen (Denmark)

1 Let a token be any subexpression of M, the lambda expression being evaluated. A traversal is a sequence of occurrences of
tokens. Some tokens have back pointers to earlier positions in the current traversal. A token may occur more than once, or not at
all in a traversal. The size of the traversals: of the order of the length of the expression’s head linear reduction sequence.

References

1]

2]

[3]

[4]

[5]

(6]

[14]
[15]
[16]

S. Abramsky and G. McCusker. Game semantics. In Computational Logic: Proceedings of the 1997
Marktoberdorf Summer School, pages 1-56. Springer Verlag, 1999.

Samson Abramsky, Pasquale Malacaria, and Radha Jagadeesan. Full abstraction for PCF. In Theoretical
Aspects of Computer Software, International Conference TACS 94, Sendai, Japan, April 19-22, 199/,
Proceedings, pages 1-15, 1994.

Samson Abramsky and C.-H. Luke Ong. Full abstraction in the lazy lambda calculus. Inf. Comput.,
105(2):159-267, 1993.

William Blum and C.-H. Luke Ong. The safe lambda calculus. Logic Methods in Computer Science, 5(1),
2009.

William Blum and Luke Ong. A concrete presentation of game semantics. In Galop 2008:Games for Logic
and Programming Languages, 2008.

J. M. E. Hyland and C.-H. Luke Ong. On full abstraction for PCF: I, II, and III. Inf. Comput., 163(2):285—
408, 2000.

Neil D. Jones, editor. Semantics-Directed Compiler Generation, Proceedings of a Workshop, Aarhus, Den-
mark, January 14-18, 1980, volume 94 of Lecture Notes in Computer Science. Springer, 1980.

Neil D. Jones. The expressive power of higher-order types or, life without CONS. J. Funct. Program.,
11(1):5-94, 2001.

Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. Partial evaluation and automatic program generation.
Prentice Hall international series in computer science. Prentice Hall, 1993.

Neil D. Jones and Steven S. Muchnick. The complexity of finite memory programs with recursion. J. ACM,
25(2):312-321, 1978.

Neil D. Jones and Steven S. Muchnick. TEMPO: A Unified Treatment of Binding Time and Parameter
Passing Concepts in Programming Languages, volume 66 of Lecture Notes in Computer Science. Springer,

1978.

Andrew D. Ker, Hanno Nickau, and C.-H. Luke Ong. Innocent game models of untyped lambda-calculus.
Theor. Comput. Sci., 272(1-2):247-292, 2002.

Robin P. Neatherway, Steven J. Ramsay, and C.-H. Luke Ong. A traversal-based algorithm for higher-
order model checking. In ACM SIGPLAN International Conference on Functional Programming, ICFP’12,
Copenhagen, Denmark, September 9-15, 2012, pages 353364, 2012.

C.-H. Luke Ong. Normalisation by traversals. CoRR, abs/1511.02629, 2015.
Gordon D. Plotkin. LCF considered as a programming language. Theor. Comput. Sci., 5(3):223-255, 1977.

David A. Schmidt. State transition machines for lambda calculus expressions. In Jones [7], pages 415-440.

