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Game semantics re-examined. A starting point: the game semantics for PCF can be thought of as a PCF
interpreter. In game semantics papers [I, 2, B, 4, Bl [6] [12], T3], 4] the denotation of an expression is a game
strategy. When played, the game results in a traversal’l Ong’s recent paper [I4] normalises a simply typed
A-expression using traversals.

A surprising consequence: it is possible to build a lambda calculus interpreter with none of the traditional
implementation machinery: S-reduction; environments binding variables to values; and “closures” and “thunks”
for function calls and parameters. (This was implicitly visible in early work on full abstraction for PCF.)

A new angle on game semantics: It looks very promising to study its operational consequences. Further,
this may give a new line of attack on an old topic: semantics-directed compiler generation [T, [16].

An idea: specialise a traversal-based normaliser. Ong’s algorithm [I4] is defined by structural recursion
on the syntax of (the eta-long form of) a A-expression M. Consequence: the algorithm can be specialised with
respect to the sub-A-expressions of M. (Specialisation is also known as partial evaluation, see [9].)

An intermediate step: a low-level semantic language LLL. A partial evaluator, given a program p and
the static portion s of its input data, will precompute the parts of p’s computation that depend only on s, and
generate residual code for all other parts of p. In the current context: specialisation is used to factor a given
traversal algorithm t¢rav : A — Traversals into two stages:

LLL

trav = travgen ;[ |*** where travgen : A — LLL and [ | : LLL — Traversals

The specialised traversal-builder is a residual output program in language LLL. The output program contains
no lambda-syntax; only target code to construct the traversal.

Traversals for As‘mplvtyped,

We programmed Ong’s traversal algorithm in both HASKELL and SCHEME. The HASKELL version includes
typing (Algorithm W, given user-defined types for free variables); conversion to eta-long form; the traversal
algorithm itself; and construction of the residual A-expression. The SCHEME version is (at the time of writing)
nearly in form suitable for automatic specialisation. We will use the system UNMIX (Sergei Romanenko).

We have implemented an LLL-generator. Given an input A-expression M, the generator produces as output
an LLL program py; that, when run, will yield the traversals of M. Symbolically: [M] = [[par]]-

A well-known fact: the traversal of M may be much larger than M. (By Statman’s results it may be larger
by a “non-elementary” amount!). It is possible, though, to construct pys so |pa| = O(|M]), ie., M’s LLL
equivalent has size that is only linearly larger than M itself.

For specialisation, all calls of the traversal algorithm to itself that do not progress from one M subexpression
to a proper subexpression are annotated as “dynamic”. The motivation is increased efficiency: no such recursive
calls in the traversal-builder will be unfolded while producing the generator; but all other calls will be unfolded.

The current implementation regards LLL as a subset of SCHEME, so the output pj; is currently produced in
the form of a SCHEME program. (This will soon be changed, replacing SCHEME by a tiny subset of HASKELL.)

Traversals for A¥"vPed, A traversal algorithm for untyped M-expressions M has been implemented in HASKELL.
It is more complex than Ong’s evaluator, using four different kinds of back pointers. The net effect is that an
arbitrary untyped A-expression can be translated into LLL. A correctness proof is pending.

As with Ong’s evaluator, this algorithm is also defined by structural recursion on its input A-expression’s
syntax. Current work: apply partial evaluation to the traversal algorithm for untyped A-expressions.

Next steps: (a) More on languages, partial evaluation and implementation. (b) Find a way to separate
programs from data. Regard a computation of A-expression M on input d as a game between the LLL-codes for
M and d. (¢) Study the utility of LLL as an intermediate language for a semantics-directed compiler generator.
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1 Let a token be any subexpression of M, the lambda expression being evaluated. A traversal is a sequence of occurrences of
tokens. Some tokens have back pointers to earlier positions in the current traversal. A token may occur more than once, or not at
all in a traversal. The size of the traversals: of the order of the length of the expression’s head linear reduction sequence.
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