
Partial Evaluation and Normalisation by Traversals

Joint work by Daniil Berezun∗ and Neil D. Jones†

January 23, 2016

Game semantics re-examined. A starting point: the game semantics for PCF can be thought of as a PCF
interpreter. In game semantics papers [1, 2, 3, 4, 5, 6, 12, 13, 14] the denotation of an expression is a game
strategy. When played, the game results in a traversal1. Ong’s recent paper [14] normalises a simply typed
λ-expression using traversals.

A surprising consequence: it is possible to build a lambda calculus interpreter with none of the traditional
implementation machinery: β-reduction; environments binding variables to values; and “closures” and “thunks”
for function calls and parameters. (This was implicitly visible in early work on full abstraction for PCF.)

A new angle on game semantics: It looks very promising to study its operational consequences. Further,
this may give a new line of attack on an old topic: semantics-directed compiler generation [7, 16].

An idea: specialise a traversal-based normaliser. Ong’s algorithm [14] is defined by structural recursion
on the syntax of (the eta-long form of) a λ-expression M . Consequence: the algorithm can be specialised with
respect to the sub-λ-expressions of M . (Specialisation is also known as partial evaluation, see [9].)

An intermediate step: a low-level semantic language lll. A partial evaluator, given a program p and
the static portion s of its input data, will precompute the parts of p’s computation that depend only on s, and
generate residual code for all other parts of p. In the current context: specialisation is used to factor a given
traversal algorithm trav : Λ → Traversals into two stages:

trav = travgen ; [[]]
LLL

where travgen : Λ → lll and [[]]
LLL

: lll → Traversals

The specialised traversal-builder is a residual output program in language lll. The output program contains
no lambda-syntax; only target code to construct the traversal.

Traversals for Λsimplytyped.
We programmed Ong’s traversal algorithm in both haskell and scheme. The haskell version includes

typing (Algorithm W, given user-defined types for free variables); conversion to eta-long form; the traversal
algorithm itself; and construction of the residual λ-expression. The scheme version is (at the time of writing)
nearly in form suitable for automatic specialisation. We will use the system unmix (Sergei Romanenko).

We have implemented an lll-generator. Given an input λ-expression M , the generator produces as output
an lll program pM that, when run, will yield the traversals of M . Symbolically: [[M]] = [[[[pM]]]].

A well-known fact: the traversal of M may be much larger than M . (By Statman’s results it may be larger
by a “non-elementary” amount!). It is possible, though, to construct pM so |pM | = O(|M |), i.e., M ’s lll
equivalent has size that is only linearly larger than M itself.

For specialisation, all calls of the traversal algorithm to itself that do not progress from one M subexpression
to a proper subexpression are annotated as “dynamic”. The motivation is increased efficiency: no such recursive
calls in the traversal-builder will be unfolded while producing the generator; but all other calls will be unfolded.

The current implementation regards lll as a subset of scheme, so the output pM is currently produced in
the form of a scheme program. (This will soon be changed, replacing scheme by a tiny subset of haskell.)

Traversals for Λuntyped. A traversal algorithm for untyped λ-expressionsM has been implemented in haskell.
It is more complex than Ong’s evaluator, using four different kinds of back pointers. The net effect is that an
arbitrary untyped λ-expression can be translated into lll. A correctness proof is pending.

As with Ong’s evaluator, this algorithm is also defined by structural recursion on its input λ-expression’s
syntax. Current work: apply partial evaluation to the traversal algorithm for untyped λ-expressions.

Next steps: (a) More on languages, partial evaluation and implementation. (b) Find a way to separate
programs from data. Regard a computation of λ-expression M on input d as a game between the lll-codes for
M and d. (c) Study the utility of lll as an intermediate language for a semantics-directed compiler generator.

∗JetBrains and St. Petersburg State University (Russia)
†DIKU, University of Copenhagen (Denmark)
1 Let a token be any subexpression of M , the lambda expression being evaluated. A traversal is a sequence of occurrences of

tokens. Some tokens have back pointers to earlier positions in the current traversal. A token may occur more than once, or not at
all in a traversal. The size of the traversals: of the order of the length of the expression’s head linear reduction sequence.

1

References

[1] S. Abramsky and G. McCusker. Game semantics. In Computational Logic: Proceedings of the 1997
Marktoberdorf Summer School, pages 1–56. Springer Verlag, 1999.

[2] Samson Abramsky, Pasquale Malacaria, and Radha Jagadeesan. Full abstraction for PCF. In Theoretical
Aspects of Computer Software, International Conference TACS ’94, Sendai, Japan, April 19-22, 1994,
Proceedings, pages 1–15, 1994.

[3] Samson Abramsky and C.-H. Luke Ong. Full abstraction in the lazy lambda calculus. Inf. Comput.,
105(2):159–267, 1993.

[4] William Blum and C.-H. Luke Ong. The safe lambda calculus. Logic Methods in Computer Science, 5(1),
2009.

[5] William Blum and Luke Ong. A concrete presentation of game semantics. In Galop 2008:Games for Logic
and Programming Languages, 2008.

[6] J. M. E. Hyland and C.-H. Luke Ong. On full abstraction for PCF: I, II, and III. Inf. Comput., 163(2):285–
408, 2000.

[7] Neil D. Jones, editor. Semantics-Directed Compiler Generation, Proceedings of a Workshop, Aarhus, Den-
mark, January 14-18, 1980, volume 94 of Lecture Notes in Computer Science. Springer, 1980.

[8] Neil D. Jones. The expressive power of higher-order types or, life without CONS. J. Funct. Program.,
11(1):5–94, 2001.

[9] Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. Partial evaluation and automatic program generation.
Prentice Hall international series in computer science. Prentice Hall, 1993.

[10] Neil D. Jones and Steven S. Muchnick. The complexity of finite memory programs with recursion. J. ACM,
25(2):312–321, 1978.

[11] Neil D. Jones and Steven S. Muchnick. TEMPO: A Unified Treatment of Binding Time and Parameter
Passing Concepts in Programming Languages, volume 66 of Lecture Notes in Computer Science. Springer,
1978.

[12] Andrew D. Ker, Hanno Nickau, and C.-H. Luke Ong. Innocent game models of untyped lambda-calculus.
Theor. Comput. Sci., 272(1-2):247–292, 2002.

[13] Robin P. Neatherway, Steven J. Ramsay, and C.-H. Luke Ong. A traversal-based algorithm for higher-
order model checking. In ACM SIGPLAN International Conference on Functional Programming, ICFP’12,
Copenhagen, Denmark, September 9-15, 2012, pages 353–364, 2012.

[14] C.-H. Luke Ong. Normalisation by traversals. CoRR, abs/1511.02629, 2015.

[15] Gordon D. Plotkin. LCF considered as a programming language. Theor. Comput. Sci., 5(3):223–255, 1977.

[16] David A. Schmidt. State transition machines for lambda calculus expressions. In Jones [7], pages 415–440.

2

