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Abstract

Many programs which solve complicated problems can be
seen as inversions of other, much simpler, programs. One par-
ticular example is transforming verifiers into solvers which
can be achieved with low effort by implementing the verifier
in a relational language and then executing it in the back-
ward direction. Unfortunately, as it is common with inverse
computations, interpretation overhead may lead to subpar
performance compared to direct program inversion. In this
paper we discuss functional conversion aimed at improv-
ing relational miniKanren specifications with respect to a
known fixed direction. Our preliminary evaluation demon-
strates a significant performance increase for some programs
which exemplify the approach.

CCS Concepts: • Software and its engineering→ Con-

straint and logic languages.

Keywords: program inversion, inverse computations, rela-
tional programming, functional programming, conversion

1 Introduction

There is a well-known observation [1, 13] that programs solv-
ing certain problems can be acquired by inverting programs
solving some other, much simpler, problems. Sometimes the
difference in the “simplicity” can be characterized in pre-
cise complexity-theoretic terms: for example, type checking
for simple typed lambda calculus (STLC) is known to be
linear-time (and rather straightforward to implement), while
type inference (its inversion) is PTIME-complete [16], and
type inhabitation problem (its another inversion) is PSPACE-
complete [24].

In the scope of this paper we will be interested in a more
concrete scenario of this generic idea, namely, in turning
verifiers into solvers. A verifier is a procedure that, given an
instance of the problem and some sample, verifies if this sam-
ple is a solution. A solver takes an instance of the problem
and returns such a sample which makes the verifier to suc-
ceed. For the variety of search problems, the implementation
of a verifier is straightforward; on the other hand its inver-
sion is a solver, which as a rule is much harder to implement
in an explicit manner. There are a few approaches to program
inversion [2, 3], and the properties of the solver produced by
inversion greatly depend on the approach utilized. We focus

on the application of relational programming [7] as a way to
run programs in the reverse direction.
Relational programming can be considered as a subfield

of conventional logic programming focused on the study
of implementation techniques and applications of purely
relational specifications. In a narrow sense, relational pro-
gramming amounts to writing programs in miniKanren1 —
an embedded DSL initially developed for Scheme and later
ported for dozens of other host languages. Based on the same
theory of first-order Horn clauses as, for example, Prolog,
miniKanren employs a complete interleaving search [9, 19]
and discourages the use of extra-logical features such as
knowledge of concrete search order, “cuts”, side-effects, ef-
ficient, but non-relational arithmetic, etc. In conventional
logic programming the specification provided by the end-
user usually encodes a certain concrete way to solve a prob-
lem. Contrary to this, miniKanren shifts the focus onto the
specification of the problem itself with no certain hints on
how to solve its various instances. This makes the specifica-
tions written in miniKanren short, elegant and expressive.
It is possible to directly employ the verifier-to-solver ap-

proach [5, 10] with miniKanren. It has been successfully ap-
plied in a few non-trivial projects [11, 12]. On the other hand,
many useful optimization techniques cannot be applied for
miniKanren programs directly since these programs lack an
important part of information — the direction under which
relational verifier turns into a solver. By taking this informa-
tion into account, it is possible to make the approach more
universally practical.
In this paper we present the results of our exploration

in the area of mode inference and functional conversion for
miniKanren. Mode analysis and inference is a relevant tech-
nique for conventional logic programming [6, 17, 21]. A
mode can be considered as an implicit specification of a direc-
tion in which a relation is intended to be evaluated. Given a
user-defined description of modes for (some) relations, mode
analysis propagates the mode information through the rest
of the logic program thus defining more concrete evaluation
strategy for the rest of its relations.
Various notions and concrete approaches are employed

for mode analysis in different settings, and we give a sur-
vey in Section 7. In our setting we consider user-defined
mode specification for the top-level goal as the prescription

1Website of the miniKanren programming language: http://minikanren.org

http://minikanren.org
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𝐶 (𝑥1, 𝑥2) ≡ 𝐶 (𝐶 (𝑦1, 𝑦2) , 𝑦3) ⇒ 𝑥1 ≡ 𝐶 (𝑦1, 𝑦2) ∧ 𝑥2 ≡ 𝑦3
𝐶 (𝐶 (𝑥1, 𝑥2) , 𝑥3) ≡ 𝐶 (𝐶 (𝑦1, 𝑦2) , 𝑦3) ⇒ 𝑥1 ≡ 𝑦1 ∧ 𝑥2 ≡ 𝑦2 ∧ 𝑥3 ≡ 𝑦3

𝑥 ≡ 𝐶 (𝑦,𝑦) ⇒ 𝑥 ≡ 𝐶 (𝑦1, 𝑦2) ∧ 𝑦1 ≡ 𝑦2
𝑎𝑑𝑑𝑜 (𝑥, 𝑥, 𝑧) ⇒ 𝑎𝑑𝑑𝑜 (𝑥1, 𝑥2, 𝑧) ∧ 𝑥1 ≡ 𝑥2

Figure 1. Examples of normalized goals

of the direction in which relational specification has to be
evaluated to provide a solver for the problem in question.
However, such a prescription cannot be directly employed
in miniKanren as it contradicts the very nature of relational
programming. Instead, we accompany mode inference with
functional conversion — a transformation which, given a rela-
tional specification, a top-level goal, user-defined modes for
this goal and the results of mode inference provides a regular
functional program which delivers exactly the same answers
as the top-level goal being evaluated in the direction pre-
scribed by the modes. In addition, functional conversion can
sometimes eliminate the interpretation overhead introduced
by miniKanren implementation as a shallow DSL: it is ca-
pable of replacing unification with pattern-matching, make
use of deterministic order of evaluation if such an order is
discovered by mode inference, etc.

The contribution of this paper is as follows:
• We reiterate onmode inference for miniKanren, speci-
fying concrete requirements specific for both miniKan-
ren and our ultimate goal of putting verifier-to-solver
idea to work.
• We describe a concrete approach to mode inference
which takes the aforementioned requirements into
account. As mode inference in general is known to
be undecidable, we develop a number of heuristics
specific to our case.
• We implement both mode inference and functional
conversion for a reference miniKanren implementa-
tion.
• We evaluate our implementation on several bench-
marks to investigate the advantages, drawbacks, and
potential areas for improvement in our approach.

The rest of the paper is structured as follows. Section 2 de-
scribes the main ideas behind relational programming as well
as the object language used in this paper. Related work in-
cluding inverse computations and mode analysis is discussed
in Section 7. Section 3 describes the scheme of functional
conversion. The conversion is illustrated by examples in
Section 4. The evaluation of the approach is presented in Sec-
tion 5, followed by the discussion in Section 6. We conclude
and sketch the directions for future work in Section 8.

2 Relational Programming and

miniKanren

Relational programming as a subfield of conventional logic
programming which is focused on using purely relational

let rec add𝑜 x y z =
(x ≡ O ∧ y ≡ z ) ∨
( fresh x1 , z1 in

x ≡ S x1 ∧
add𝑜 x1 y z1 ∧
z ≡ S z1 )

Figure 2. Addition relation in miniKanren

specifications only. Using extra-logical features such as “cuts”
and side-effects common in Prolog as well as the knowl-
edge of the particular direction the relation is supposed to
be run is discouraged. Since the search in miniKanren is
complete [9, 19], all answers to the query will eventually be
found without the programmer taking into account a partic-
ular search strategy used in the language implementation. It
also means that the way in which a program is structured
has no effect on which answers are found, only on the order
in which they are computed.
In this paper we use a core miniKanren language usu-

ally referred to as microKanren. In its syntax, a relation
is a goal comprised of disjunctions (∨ ) or conjunctions
(∧ ) of other goals. A base goal can be either an explicit
unification of two terms (≡) or a call of a relation. An ex-
ample program in miniKanren is shown in Figure 2. It
relates triples of Peano natural numbers x, y, z such that
x + y = z. We use a syntax notation such that construc-
tors are denoted by identifiers which start with the upper-
case letters, while identifiers which start with the lower-
case letters are used as variable names. The superscript
“𝑜” denotes a relation name while the keyword fresh in-
troduces fresh variables into the scope. To execute a rela-
tion, one should provide a query to run. For example, the
query run q (add𝑜 q q (S (S O ))) finds a number which,
doubled, is 2 in Peano representation, namely S O. Some
queries can compute values of several variables, and there
may be infinitely many of them. For example, the query
run q ( fresh y ,z in q == (y , z ) ∧ add𝑜 (S O ) y z )
finds all y and z such that 1 + 𝑦 = 𝑧. These answers are
(O , S O ) , (S O , S (S O )) and so forth.
To simplify the functional conversion scheme, we consider

miniKanren relations to be in the superhomogeneous nor-
mal form used in the Mercury programming language [22].
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111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

A Case Study in Functional Conversion and Mode Inference in miniKanren Conference’17, July 2017, Washington, DC, USA

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

D𝑁
𝑉 : 𝑅𝑛 (𝑥1, . . . , 𝑥𝑛) = Disj𝑉 , 𝑥𝑖 ∈ 𝑉 normalized relation definition

Disj𝑉 :
∨ (𝑐1, . . . , 𝑐𝑛) , 𝑐𝑖 ∈ Conj𝑉 normal form

Conj𝑉 :
∧ (𝑔1, . . . , 𝑔𝑛) , 𝑔𝑖 ∈ Base𝑉 normal conjunction

Base𝑉 : 𝑉 ≡ T𝑉 flat unification
| 𝑅𝑛 (𝑥1, . . . , 𝑥𝑛) , 𝑥𝑖 ∈ 𝑉 , 𝑖 ≠ 𝑗 ⇒ 𝑥𝑖 ≠ 𝑥 𝑗 flat call

Figure 3. Abstract syntax of microKanren in the normal form

let double𝑜 x𝑔→𝑔 r𝑓→𝑔 =
addo𝑜 x

𝑔→𝑔

1 x
𝑔→𝑔

2 r𝑓→𝑔 ∧
x
𝑔→𝑔

1 ≡ x
𝑔→𝑔

2

let rec add𝑜 x𝑔→𝑔 y𝑔→𝑔 z𝑓→𝑔 =
(x𝑔→𝑔 ≡ O ∧ y𝑔→𝑔 ≡ z𝑓→𝑔 ) ∨
(x𝑔→𝑔 ≡ S x

𝑓→𝑔

1 ∧
add𝑜 x

𝑔→𝑔

1 y𝑔→𝑔 z
𝑓→𝑔

1 ∧
z𝑓→𝑔 ≡ S z

𝑔→𝑔

1 )

(a) Forward direction

let double𝑜 x𝑓→𝑔 r𝑔→𝑔 =
addo𝑜 x

𝑓→𝑔

1 x
𝑓→𝑔

2 r𝑔→𝑔 ∧
x
𝑔→𝑔

1 ≡ x
𝑔→𝑔

2

let rec add𝑜 x𝑓→𝑔 y𝑓→𝑔 z𝑔→𝑔 =
(x𝑓→𝑔 ≡ O ∧ y𝑓→𝑔 ≡ z𝑔→𝑔 ) ∨
(z𝑓→𝑔 ≡ S z

𝑔→𝑔

1 ∧
add𝑜 x

𝑓→𝑔

1 y𝑓→𝑔 z
𝑔→𝑔

1 ∧
x𝑓→𝑔 ≡ S x

𝑔→𝑔

1 )

(b) Backward direction

Figure 4. Normalized doubling and addition relations with mode annotations

Converting an arbitrary miniKanren relation into the nor-
mal form is a simple syntactic transformation, which we
omit.
In the normal form, a term is either a variable or a con-

structor application which is flat and linear. Linearity means
that arguments of a constructor are distinct variables. To be
flat, a term should not contain any nested constructors. Each
constructor has a fixed arity 𝑛. Below is the abstract syntax
of the term language over the set of variables 𝑉 :

T𝑉 = 𝑉 ∪ {C𝑛 (𝑥1, . . . , 𝑥𝑛) | 𝑥𝑖 ∈ 𝑉 ; 𝑖 ≠ 𝑗 ⇒ 𝑥𝑖 ≠ 𝑥 𝑗 }

Whenever a term which does not adhere to this form is
encountered in a unification or as an argument of a call, it
is transformed into a conjunction of several unifications, as
illustrated by the examples in Figure 1.

Unification in the normal form is restricted to always unify
a variable with a term. We also prohibit using disjunctions
inside conjunctions. The normalization procedure declares
a new relation whenever this is encountered. This is done
to limit the number of possible permutations one has to
consider when doing the mode inference.

The complete abstract syntax of the miniKanren language
used in this paper is presented in Figure 3.

3 Functional Conversion for miniKanren

In this section, we describe the functional conversion algo-
rithm. The reader is encouraged to first read the paper [27]
on the topic, which introduces the conversion scheme on a
series of examples.

Functional conversion is done for a relation with a con-
crete fixed direction. The goal is to create a function which
computes the same answers as miniKanren would, not nec-
essarily in the same order. Since the search in miniKanren
is complete, both conjuncts and disjuncts can be reordered
freely: interleaving makes sure that no answers would be
lost this way. Moreover, the original order of the subgoals
is often suboptimal for any direction but the one which the
programmer had in mind when they encoded the relation. In
verifiers-to-solvers approach, a relational verifier is usually
created automatically from an interpreter written in a func-
tional language by means of typed relational conversion [14].
When it is used to create a relation, the order of the subgoals
only really suits the forward direction, in which the relation
is often not intended to be run (in this case, it is better to
run the original function).

The mode inference results in the relational program with
all variables annotated by their modes, and all base sub-
goals ordered in a way that further conversion makes sense.
Conversion then produces functions in the intermediate lan-
guage. It may then be pretty printed into concrete functional
programming languages, in our case Haskell and OCaml.

3.1 Mode Inference

Given an annotation for a relation, mode inference deter-
minesmodes of each variable of the relation. For somemodes,
conjunctions in the body of a relation may need reordering
to ensure that consumers of computed values come after
the producers of said values so that a variable is never used
before it is bound to some value. In this project, we employed
the least complicated mode system, in which variables may

PEPM’24
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only have an in or out mode. A mode maps variables of a
relation to a pair of the initial and final instantiations. The
mode in stands for𝑔→ 𝑔, while out stands for 𝑓 → 𝑔. The in-
stantiation 𝑓 represents an unbound, or free, variable, when
no information about its possible values is available. When
the variable is known to be ground, its instantiation is 𝑔.
In this paper, we call a pair of instantiations a mode of a

variable. Figure 4 shows examples of the normalized miniKan-
ren relations with modes inferred for the forward and back-
ward directions. We use superscript annotation for variables
to represent their modes visually. Notice the different order
of conjuncts in the bodies of the add𝑜 relation in different
modes.
We employ a simple version of mode analysis to order

subgoals properly in the given direction. The mode analysis
makes sure that a variable is never used before it is associated
with some value. It also ensures that once a variable becomes
ground, it never becomes free, thus the value of a variable is
never lost. The mode inference pseudocode is presented in
Listing 1.

1 modeInfer (𝑅𝑖
(
𝑥1, . . . , 𝑥𝑘𝑖

)
≡ 𝑏𝑜𝑑𝑦 ) =

2 (𝑅𝑖
(
𝑥1, . . . , 𝑥𝑘𝑖

)
≡ (modeInferDisj body ) )

3
4 modeInferDisj (

∨ (𝑐1, . . . , 𝑐𝑛) ) =
5

∨(modeInferConj 𝑐1, . . . , modeInferConj 𝑐𝑛)
6
7 modeInferConj (

∧ (𝑔1, . . . , 𝑔𝑛) ) =
8 let (picked , others ) = pickConjunct [𝑔1, . . . , 𝑔𝑛]
9 in let moddedPicked = modeInferBase picked
10 in let moddedConjs = modeInferConj (

∧
others )

11 in

∧(moddedPicked : moddedConjs )
12
13 pickConjunct goals =
14 pickGuard goals <|>
15 pickAssignment goals <|>
16 pickMatch goals <|>
17 pickCallWithGroundArguments goals <|>
18 pickUnificationGenerator goals <|>
19 pickCallGenerator goals

Listing 1.Mode inference pseudocode

Mode inference starts by initializing modes for all vari-
ables in the body of the given relation according to the given
direction. All variables that are among arguments are anno-
tated with their in or out modes, while all other variables get
only their initial instantiations specified as 𝑓 .

Then the body of the relation is analyzed (see line 2). Since
the body is normalized, it can only be a disjunction. Each
disjunct is analyzed independently (see line 5) because no
data flow happens between them.

Analyzing conjunctions involves analyzing subgoals and
ordering them. Let us first consider mode analysis of unifi-
cations and calls, and then circle back to the way we order
them. Whenever a base goal is analyzed, all variables in it
have some initial instantiation, and some of them also have
some final instantiation. Mode analysis of a base goal boils
down to making all final instantiations ground.
When analyzing a unification, several situations may oc-

cur. Firstly, every variable in the unification can be ground,
as in 𝑥𝑔→𝑔 ≡ 𝑂 or in 𝑦𝑔→? ≡ 𝑧𝑔→? (here ? is used to denote
that a final instantiation is not yet known). We call this case
guard, since it is equivalent to checking that two values are
the same.

The second case is when one side of a unification only con-
tains ground variables. Depending on which side is ground,
we call this either assignment or match. The former corre-
sponds to assigning the value to a variable, as in 𝑥 𝑓→? ≡
𝑆 𝑥

𝑔→𝑔

1 or 𝑥𝑔→𝑔 ≡ 𝑦 𝑓→?. The latter — to pattern matching
with the variable as the scrutinee, as in 𝑥𝑔→𝑔 ≡ 𝑆 𝑥

𝑓→?
1 . No-

tice that we allow for some variables on the right-hand side
to be ground in matches, given that at least one of them is
free.
The last case occurs when both the left-hand and right-

hand sides contain free variables. This does not translate well
into functional code. Any free logic variable corresponds to
the possibly infinite number of ground values. To handle
this kind of unification, we propose to use generators which
produce all possible ground values a free variable may have.
We base our ordering strategy for conjuncts on the fact

that these four different unification types have different costs.
The guards are just equality checks which are inexpensive
and can reduce the search space considerably. Assignments
and matches are more involved, but they still take much less
effort than generators. Moreover, executing non-generator
conjuncts first can make some of the variables of the prospec-
tive generator ground thus avoiding generation in the end.
This is the base reasoning which is behind our ordering
strategy.

The function pickConjunct selects the base goal which is
least likely to blow up the search space. The right-associative
function <|> used in lines 14 through 18 is responsible for
selecting the base goals in the order described. The function
first attempts to pick a base goal with its first argument, and
only if it fails, the second argument is called. As a result,
pickConjunct first picks the first guard unification it can
find (pickGuard). If no guard is present, then it searches
for the first assignment (pickAssignment), and then for
the match (pickMatch). If all unifications in the conjunc-
tion are generators, then we search for relation calls with
some ground arguments (pickCallWithGroundArguments).
If there are none, then we have no choice but selecting a
generating unification (pickUnificationGenerator) and
then a call with all arguments free (pickCallGenerator).
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F𝑉 = Sum [F𝑉 ] concatenation of streams
| Bind [( [𝑉 ] , F𝑉 )] monadic bind for streams
| Return [T𝑉 ] return of a tuple of terms
| Guard (𝑉 ,𝑉 ) equality check
| Match𝑉 (T𝑉 , F𝑉 ) match a variable against a pattern
| 𝑅𝑛 ( [𝑉 ] , [𝐺]) function call
| Gen𝐺 generator

Figure 5. Abstract syntax of the intermediate language F

Once one conjunct is picked, it is analyzed (see line 9).
The picked conjunct may instantiate new variables, thus this
information is propagated onto the rest of the conjuncts.
Then the rest of the conjuncts is mode analyzed as a new
conjunction (see line 10). If any new modes for any of the
relations are encountered, they are also mode analyzed.
It is worth noticing that any relation can generate infin-

itely many answers. We cannot judge the relation to be such
generator solely by its mode: for example, the addition rela-
tion in the mode add𝑜 x𝑔→𝑔 y𝑓→𝑔 z𝑓→𝑔 generates an infinite
stream, while add𝑜 x𝑓→𝑔 y𝑓→𝑔 z𝑔→𝑔 does not.

3.2 Conversion into Intermediate Representation

To represent nondeterminism, our functional conversion
uses the basis of miniKanren — the stream data structure. A
relation is converted into a function with 𝑛 arguments which
returns a stream of𝑚-tuples, where 𝑛 is the number of the
input arguments, and𝑚 — the number of the output argu-
ments of the relation. Since stream is a monad, functions can
be written elegantly in Haskell using do-notation (see Fig-
ure 6). We use an intermediate representation which draws
inspiration from Haskell’s do-notation, but can then be
pretty-printed into other functional languages. The abstract
syntax of our intermediate language is shown in Figure 5.
The conversion follows quite naturally from the modded
relation and the syntax of the intermediate representation.
A body of a function is formed as an interleaving con-

catenation of streams (Sum), each of which is constructed
from one of the disjuncts of the relation. A conjunction is
translated into a sequence of bind statements (Bind): one for
each of the conjuncts and a return statement (Return) in the
end. A bind statement binds a tuple of variables (or nothing)
with values taken from the stream in the right-hand side.

A base goal is converted into a guard (Guard), match
(Match), or function call, depending on the goal’s type. As-
signments are translated into binds with a single return state-
ment on the right. Notice, that a match only has one branch.
This branch corresponds to a unification. If the scrutinee
does not match the term it is unified with, then an empty
stream is returned in the catch-all branch. If a term in the
right-hand side of a unification has both out and in variables,
then additional guards are placed in the body of the branch

to ensure the equality between values bound in the pattern
and the actual ground values.

Generators (Gen) are used for unifications with free vari-
ables on both sides. A generator is a stream of possible values
for the free variables, and it is used for each variable from
the right-hand side of the unification. The variable from
the left-hand side of the unification is then simply assigned
the value constructed from the right-hand side. Our current
implementation works with an untyped deeply embedded
miniKanren, in which there is not enough information to
produce generators automatically. We decided to delegate
the responsibility to provide generators to the user: a gen-
erator for each free variable is added as an argument of the
relation. When the user is to call the function, they have to
provide the suitable generators.

4 Examples

In this section, we provide some examples which demon-
strate mode analysis and conversion results.

4.1 Multiplication Relation

Figure 6 shows the implementation of the multiplication
relation mul𝑜 , the mode analysis result for mode mul𝑜 x𝑓→𝑔

y𝑔→𝑔 z𝑔→𝑔 , and the results of functional conversion into
Haskell and OCaml.

Note that the unification comes last in the second disjunct.
This is because before the two relation calls are done, both
variables in the unification are free. Our version of mode
inference puts the relation calls before the unification, but
the order of the calls depends on their order in the original
relation. There is nothing else our mode inference uses to
prefer the order presented in the figure over the opposite:
mul𝑜 x

𝑓→𝑔

1 y𝑔→𝑔 z
𝑓→𝑔

1 ∧ add𝑜 y𝑔→𝑔 z
𝑔→𝑔

1 z𝑔→𝑔. However, it
is possible to derive this optimal order, if determinism analy-
sis is employed: add𝑜 y𝑔→𝑔 z

𝑓→𝑔

1 z𝑔→𝑔 is deterministic while
mul𝑜 x

𝑓→𝑔

1 y𝑔→𝑔 z
𝑓→𝑔

1 is not. Putting nondeterministic com-
putations first makes the search space larger, and thus should
be avoided if another order is possible.

Functional conversions in both languages are similar, mod-
ulo the syntax. The Haskell version employs do-notation,
while we use let-syntax in the OCaml code. Both are syn-
tactic sugar for monadic computations over streams. We use
the following convention to name the functions: we add a
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let rec mul𝑜 x y z =
(x ≡ O ∧ z ≡ O ) ∨
( fresh x1 , z1 in

(x ≡ S x1 ∧
add𝑜 y z1 z ∧
mul𝑜 x1 y z1 ) )

(a) Implementation in miniKanren

let rec mul𝑜 x𝑓→𝑔 y𝑔→𝑔 z𝑔→𝑔 =
(x𝑓→𝑔 ≡ O ∧ z𝑔→𝑔 ≡ O ) ∨
(add𝑜 y𝑔→𝑔 z

𝑓→𝑔

1 z𝑔→𝑔 ∧
mul𝑜 x

𝑓→𝑔

1 y𝑔→𝑔 z
𝑔→𝑔

1 ∧
x𝑓→𝑔 ≡ S x

𝑔→𝑔

1 )

(b) Mode inference result

muloOII x1 x2 = msum
[ do { let {x0 = O }

; guard (x2 == O )
; return x0 }

, do { x4 ← addoIOI x1 x2
; x3 ← muloOII x1 x4
; let {x0 = S x3 }
; return x0 } ]

addoIOI x0 x2 = msum
[ do { guard (x0 == O )

; let {x1 = x2 }
; return x1 }

, do { x3 ← case x0 of

{ S y3 → return y3
; _ → mzero }

; x4 ← case x2 of

{ S y4 → return y4
; _ → mzero }

; x1 ← addoIOI x3 x4
; return x1 } ]

(c) Functional conversion into Haskell

let rec muloOII x1 x2 = msum
[ ( let ∗ x0 = return O in

let ∗ _ = guard (x2 = O ) in

return x0 )
; ( let ∗ x4 = addoIOI x1 x2 in

let ∗ x3 = muloOII x1 x4 in

let ∗ x0 = return (S x3 ) in

return x0 ) ]
and addoIOI x0 x2 = msum

[ ( let ∗ _ = guard (x0 = O ) in

let ∗ x1 = return x2 in

return x1 )
; ( let ∗ x3 = match x0 with

| S y3 → return y3
| _ → mzero in

let ∗ x4 = match x2 with

| S y4 → return y4
| _ → mzero in

let ∗ x1 = addoIOI x3 x4 in

return x1 ) ]

(d) Functional conversion into OCaml

Figure 6. Multiplication relation

suffix to the relation’s name whose length is the same as the
number of the relation’s arguments. The suffix consists of
the letters I and O which denote whether the argument in
the corresponding position is in or out. The function msum
uses the interleaving function mplus to concatenate the list
of streams constructed from disjuncts. To check conditions,
we use the function guard which fails the monadic compu-
tation if the condition does not hold. Note that even though
patterns for the variable x0 in the function addoIOI are dis-
junct in two branches, we do not express them as a single
pattern match. Doing so would improve readability, but it
does not make a difference when it comes to the performance,
according to our evaluation.

4.2 The Mode of Addition Relation which Needs a

Generator

Consider the example of the addition relation in the mode
add𝑜 x𝑔→𝑔 y𝑓→𝑔 z𝑓→𝑔 presented in Figure 7. The unification
in the first disjunct of this relation involves two free variables.

We use a generator gen_addoIIO_x2 to generate a stream
of ground values for the variable z which is passed into
the function addIIO as an argument. It is up to the user to
provide a suitable generator. One of the possible generators
which produces all Peano numbers in order and an example
of its usage are presented in Figure 7b.
The generators which produce an infinite stream should

be inverse eta-delayed in OCaml and other non-lazy lan-
guages. Otherwise, the function would not terminate trying
to eagerly produce all possible ground values before using
any of them.

It is possible to automatically produce generators from the
data type of a variable, but it is currently not implemented,
as we work with an untyped version of microKanren.

5 Evaluation

To evaluate our functional conversion scheme, we imple-
mented the proposed algorithm in Haskell. We compared
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let rec add𝑜 x𝑔→𝑔 y𝑓→𝑔 z𝑓→𝑔 =
(x𝑔→𝑔 ≡ O ∧ y𝑓→𝑔 ≡ z𝑓→𝑔 ) ∨
(x𝑔→𝑔 ≡ S x

𝑓→𝑔

1 ∧
add𝑜 x

𝑔→𝑔

1 y𝑓→𝑔 z
𝑓→𝑔

1 ∧
z𝑓→𝑔 ≡ S z

𝑔→𝑔

1 )

(a) Mode inference result

genNat = msum
[ return O
, do { x ← genNat

; return (S x ) } ]
runAddoIIO x = addoIIO x genNat

(b) Generator of Peano numbers

addoIOO x0 gen_addoIOO_x2 = msum
[ do { guard (x0 == O )

; (x1 , x2 ) ← do { x2 ← gen_addoIOO_x2 ; return (x2 , x2 ) }
; return (x1 , x2 ) }

, do { x3 ← case x0 of { S y3 → return y3 ; _ → mzero }
; (x1 , x4 ) ← addoIOO x3 gen_addoIOO_x2
; let {x2 = S x4 } ; return (x1 , x2 ) } ]

(c) Functional conversion

Figure 7. Addition relation when only the first argument is in

execution time of several OCanren relations in different di-
rections against their functional counterparts in the OCaml
language. Here we showcase three relational programs and
their conversions. The implementation of the functional con-
version2 as well as the execution code3 can be found on
Github.

5.1 Evaluator of Propositional Formulas

In this example, we converted a relational evaluator of propo-
sitional formulas: see Figure 8. It evaluates a propositional
formula fm in the environment st to get the result u. A
formula is either a boolean literal, a numbered variable, a
negation of another formula, a conjunction or a disjunction
of two formulas. Converting it in the direction when every-
thing but the formula is in (see Figure 8a), allows one to
synthesize formulas which can be evaluated to the given
value. The conversion of this relation does not involve any
generators and is presented in Figure 8b.
We ran an experiment to compare the execution time of

the relational interpreter vs. its functional conversion. In
the experiment, we generated from 1000 to 10000 formulas
which evaluate to true and contain up to 3 variables with
known values. The results are presented in Figure 9. The
functional conversion improved execution time of the query
about 2.5 times from 724𝑚𝑠 to 291𝑚𝑠 for retrieving 10000
formulas.

2The repository of the functional conversion project https://github.com/
kajigor/uKanren_transformations
3Evaluation code https://github.com/kajigor/miniKanren-func

5.2 Multiplication

In this example, we converted the multiplication relation in
several directions and compared them to the relational coun-
terparts: see Figure 10. Functional conversion significantly
reduced execution time in most directions.
In the forward direction, we run the query mul𝑜 n 10 q

with n in the range from 100 to 1000, and the functional con-
version was 2 orders of magnitude faster: 927𝑚𝑠 vs 9.4𝑚𝑠 for
the largest n, see Figure 10a. In the direction which serves
as division, we run the query mul𝑜 (n /10) q n with n rang-
ing from 100 to 1000. Here, performance improved 3 orders
of magnitude: from 24𝑠 to 0.17𝑠 for the largest n, see Fig-
ure 10b. Even more impressive was the backward direction
mul𝑜 x𝑓→𝑔 y𝑓→𝑔 z𝑔→𝑔. Querying for all 16 pairs of divisors
of 1000 (mul𝑜 q r 1000) took OCanren about 32.9𝑠 , while
the functional conversion succeeded in 1.1𝑠 .

What was surprising was the mode mul𝑜 x𝑔→𝑔 y𝑓→𝑔 z𝑓→𝑔 .
In this case, the functional conversion was not only worse
than its relational counterpart, its performance degraded
exponentially with the number of answers asked. It took al-
most 1450𝑚𝑠 to find the first 7 pairs of numbers q and r such
that 10 ∗ q = r, while OCanren was able to execute the
query in 0.74𝑚𝑠 (see Figure 10c). The source of this terrible
behavior was the suboptimal order of the calls in the second
disjunct of the mul𝑜 relation in the corresponding mode (see
Figure 10d). In this case, the call add𝑜 y𝑓→𝑔 z

𝑓→𝑔

1 z𝑓→𝑔 is put
first, which generates all possible triples in the addition rela-
tion before filtering them by the call mul𝑜 x𝑔→𝑔

1 y𝑔→𝑔 z
𝑔→𝑔

1 .
The other order of calls is much better (see Figure 10e): it is
an order of magnitude faster than its relational source. To
achieve the better of these two orders automatically, we delay
picking any call with all arguments free. A call of this kind
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let rec eval𝑜 st𝑔→𝑔 fm𝑓→𝑔 u𝑔→𝑔 =
( fm𝑓→𝑔 ≡ Lit u𝑔→𝑔 ) ∨
( elem𝑜 z𝑓→𝑔 st𝑔→𝑔 u𝑔→𝑔 ∧
fm𝑓→𝑔 ≡ Var z𝑔→𝑔 ) ∨

( not𝑜 v𝑓→𝑔 u𝑔→𝑔 ∧
eval𝑜 st𝑔→𝑔 x𝑓→𝑔 v𝑔→𝑔 ∧
fm𝑓→𝑔 ≡ Neg x𝑔→𝑔 ) ∨

( or𝑜 v𝑓→𝑔 w𝑓→𝑔 u𝑔→𝑔 ∧
eval𝑜 st𝑔→𝑔 x𝑓→𝑔 v𝑔→𝑔 ∧
eval𝑜 st𝑔→𝑔 y𝑓→𝑔 w𝑔→𝑔 ∧
fm𝑓→𝑔 ≡ Disj x𝑔→𝑔 y𝑔→𝑔 ) ∨

( and𝑜 v𝑓→𝑔 w𝑓→𝑔 u𝑔→𝑔 ∧
eval𝑜 st𝑔→𝑔 x𝑓→𝑔 v𝑔→𝑔 ∧
eval𝑜 st𝑔→𝑔 y𝑓→𝑔 w𝑔→𝑔 ∧
fm𝑓→𝑔 ≡ Conj x𝑔→𝑔 y𝑔→𝑔 ) ∨

(a) Mode inference result

evaloIOI x0 x2 = msum
[ do { let {x1 = Lit x2 }

; return x1 }
, do { x7 ← elemoOII x0 x2

; let {x1 = Var x7 }
; return x1 }

, do { x5 ← notoOI x2
; x3 ← evaloIOI x0 x5
; let {x1 = Neg x3 }
; return x1 }

, do { (x5 , x6 ) ← oroOOI x2
; x3 ← evaloIOI x0 x5
; x4 ← evaloIOI x0 x6
; let {x1 = Disj x3 x4 }
; return x1 }

, do { (x5 , x6 ) ← andoOOI x2
; x3 ← evaloIOI x0 x5
; x4 ← evaloIOI x0 x6
; let {x1 = Conj x3 x4 }
; return x1 } ]

(b) Functional conversion

Figure 8. Evaluator of propositional formulas
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Figure 9. Execution time of the evaluators of propositional
formulas, eval [ true ; false ; true ] q true

always works as a generator of every tuple of values which
are in relation. It is a reasonable heuristics to postpone their
execution until its arguments become more instantiated.

5.3 Relational Sorting

This program is written in truly relational style. By definition,
a sorted list has its smallest element in its head followed by
a sorted list. The implementation of the sort𝑜 corresponds
to this definition literally: see Figure 12.

This relation can be used for both sorting a list and gener-
ating permutations, depending on which argument is passed
into it. One drawback this implementation has is that its
performance in the two directions is drastically different
and hinges on the order of two relation calls to smallest𝑜

and sort𝑜 . When the call to smallest𝑜 comes first, sorting
works fine while permutation generation times out on lists
of length 4. Reordering two calls makes it possible to gener-
ate permutations for longer lists, however sorting direction
starts to time out on lists of length 5.
The only way a programmer can implement the relation

in such a way that both directions work well, is by dupli-
cating a conjunction with the two orders mentioned. Even
though it leads to somewhat decent performance, it is far
from elegant and also increases the amount of work to be
done to compute any answer. Mode analysis is a better ap-
proach to reordering the conjuncts according to the direc-
tion needed. Accompanied by the functional conversion, it
also improves the performance significantly: see Figure 11.
Table 11a demonstrates execution time of sorting, while Ta-
ble 11b — of generating permutations. Execution of a query
was aborted after reaching the timeout of 30 seconds. Both
tables contain columns with execution times of a relation
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(a) Multiplication: mulo n 10 q
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(b) Division: mulo (n /10) q n
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(c) Generation: take n (mulo 10 q r )

let rec mul𝑜 x𝑔→𝑔 y𝑓→𝑔 z𝑓→𝑔 =
(x𝑔→𝑔 ≡ O ∧ z𝑓→𝑔 ≡ O ) ∨
(x𝑔→𝑔 ≡ S x

𝑓→𝑔

1 ∧
add𝑜 y𝑓→𝑔 z

𝑓→𝑔

1 z𝑓→𝑔 ∧
mul𝑜 x

𝑔→𝑔

1 y𝑔→𝑔 z
𝑔→𝑔

1 )

(d) Inefficient mode

let rec mul𝑜 x𝑔→𝑔 y𝑓→𝑔 z𝑓→𝑔 =
(x𝑔→𝑔 ≡ O ∧ z𝑓→𝑔 ≡ O ) ∨
(x𝑔→𝑔 ≡ S x

𝑓→𝑔

1 ) ∧
mul𝑜 x

𝑔→𝑔

1 y𝑓→𝑔 z
𝑓→𝑔

1 ∧
add𝑜 y𝑔→𝑔 z

𝑔→𝑔

1 z𝑓→𝑔 )

(e) Efficient mode

Figure 10. Execution times of the multiplication relation

with the calls sorted in the two ways described, and the ex-
ecution time of the result of functional conversion. Notice,
that the functional version is significantly faster than the
relational version with the optimal order of calls.

It is worth noting that this relation executes too slowly to
be practical even after the functional conversion. It comes
from the properties of the algorithm as well as using Peano
numbers. However this relation is illustrative of the ways
relational programs are supposed to be written and that their

execution in the reverse direction can be improved by using
sophisticated analyses rather than resorting to inelegant
software engineering practices.

5.4 Deterministic Directions

Running in some directions, relations produce deterministic
results. For example, any forward direction of a relation
created by the relational conversion produces a single result,
since it mimics the original function. The guard directions
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Relation Function
sorto
smallesto

smallesto
sorto

[3;2;1;0] 0.077s 0.004s 0.000s
[4;3;2;1;0] timeout 0.005s 0.000s
[31;...;0] timeout 1.058s 0.006s
[262;...;0] timeout timeout 1.045s

(a) Sorting direction

Relation Function
smallesto
sorto

sorto
smallesto

[0;1;2] 0.013s 0.004s 0.004s
[0;1;2;3] timeout 0.005s 0.005s
[0;...;6] timeout 0.999s 0.021s
[0;...;8] timeout timeout 1.543s

(b) Permutation generation direction

Figure 11. Relational sorting evaluation results

let rec sort𝑜 xs sorted =
(xs ≡ [] ∧ sorted ≡ [ ] ) ∨
( fresh smallest , others , sorted1 in

xs ≡ smallest : sorted1 ∧
sort𝑜 others sorted1 ∧
smallest𝑜 xs smallest others )

Figure 12. Relational sorting in miniKanren
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Figure 13. Execution time of division:
take n (mul q 10 1000)

are semi-deterministic: they may fail, but if they succeed,
they produce a single unit value. If the addition relation
is run with one of the first two arguments out, it acts as
subtraction and is also deterministic.
For such directions, there is no need to model nondeter-

minismwith the Streammonad. Semi-determinism can be ex-
pressed with a Maybe monad, while deterministic directions
can be converted into simple functions. Our implementa-
tion of functional conversion only restricts the computations

to be monadic, it does not specify which monad to use. By
picking other monads, we can achieve performance improve-
ment. For example, using Maybe for division reduces its
execution time 30 times in addition to the 2 orders of magni-
tude improvement from the functional conversion itself: see
Figure 13.

6 Discussion

Our experiments indicated that the functional conversion
is capable of improving performance of relational computa-
tions significantly in the known directions. The improvement
stems from eliminating costly unifications in favor of the
cheaper equality checks and pattern matches. Besides this,
we employed some heuristics which push lower-cost com-
putations to happen sooner while delaying higher-cost ones.
It is also possible to take into account determinism of some
directions and improve performance of them even more by
picking an appropriate monad.
We used heuristics to guide the mode analysis and there

are other projects [4, 15] which do the same achieving satis-
factory results. It is not currently clear if the heuristics we
used are universal enough. However, it is always safe to run
any deterministic computations because they never increase
the search space. We believe that it is necessary to integrate
determinism check in the mode analysis so that the more
efficient modes such as the one presented in Figure 10e could
be achieved more justifiably.

We also think that further integration with specialization
techniques such as partial deduction may benefit the con-
version even more [26]. For example, the third argument
of the propositional evaluator can be either true or false .
Specializing the evaluator for these two values may help to
shave off even more time.

7 Related Work

A mode generalizes the concept of a direction; this terminol-
ogy is commonly used in the conventional logic program-
ming community. In its most primitive form, a mode speci-
fies which arguments of a relation will be known at runtime
(input) and which are expected to be computed (output).
Several logic programming languages have mode systems
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used for optimizations [23, 25, 28], with Mercury4 stand-
ing out among them. Mercury is a modern functional-logic
programming language with a complicated mode system
capable not only of describing directions, but also specifying
if a relation in the given mode is deterministic, among other
things [17, 21].

The mode system of Mercury is prescriptive which means
that the mode dictates the data flow. Mercury translates the
logic subset of the language into a functional programming
language according to the mode assigned to the relation. The
semantics of a Mercury program exists only when the mode
is assigned. This is not the case for a miniKanren program
whose semantics is the bag of answers it produces [19] re-
gardless of the direction, data flow or the order of subgoals
within the definition. In our paper we aim to create a descrip-
tive mode system for miniKanren which does not impose
constraints on its execution. As another consequence, we
are free to compare the execution time of programs with and
without any optimizations, which Mercury papers do not
usually do.
There are multiple papers describing automatic mode in-

ference of logic programs [6, 18, 20]. The most common way
to implement mode inference is by abstract interpretation as
introduced in [8]. Mercury utilizes this approach [21] in its
implementation to guide the compilation. This mode system
proved to be not expressive enough in the context of mode
polymorphism, so they researched the use of constraint sys-
tems for mode inference [17]. While being more precise, this
system proved to be too slow to be used in the compiler.

Moreover, the compiler of Mercury is highly complicated
and demands many annotations from the end-user. They
include type, mode, uniqueness, and determinism specifi-
cations. Many miniKanren languages are embedded into
host languages which are not typed and thus we cannot rely
on type information in our conversion. It is also impossi-
ble to do what Mercury compiler does as a light-weight
embedded DSL which is one of the design principles of the
miniKanren family. Thus, our goal is to develop the simplest
approach to mode analysis which is capable of improving
the performance of the verifier-to-solver approach with the
least amount of annotations needed from the user — ideally,
only the top-level relation call should be annotated.

8 Conclusion and Future Work

In this paper, we described a semi-automatic functional con-
version of a miniKanren relation with a fixed direction into
a functional language. The conversion and mode analysis
used are rather simple and do not rely on the type system
which will make it easier to implement as a part of other
miniKanren implementations. We implemented the pro-
posed conversion and applied it to a set of relations, resulting
in significant performance enhancement, as demonstrated

4Website of the Mercury programming language: https://mercurylang.org/

in our evaluation. As part of the future work, we plan to
augment the mode analysis with a determinism check. We
also plan to integrate the functional conversion with special-
ization techniques such as partial deduction.
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