
Efficient Parallel Algorithms for String Comparison
Nikita Mishin

∗

Saint Petersburg State University

Saint Petersburg, Russia

mishinnikitam@protonmail.com

Daniil Berezun
∗

Saint Petersburg State University

Saint Petersburg, Russia

d.berezun@2009.spbu.ru

Alexander Tiskin

Saint Petersburg State University

Saint Petersburg, Russia

a.tiskin@spbu.ru

ABSTRACT
The longest common subsequence (LCS) problem on a pair of strings

is a classical problem in string algorithms. Its extension, the semi-

local LCS problem, provides amore detailed comparison of the input

strings, without any increase in asymptotic running time. Several

semi-local LCS algorithms have been proposed previously; however,

to the best of our knowledge, none have yet been implemented. In

this paper, we explore a new hybrid approach to the semi-local LCS

problem. We also propose a novel bit-parallel LCS algorithm. In the

experimental part of the paper, we present an implementation of

several existing and new parallel LCS algorithms and evaluate their

performance.

CCS CONCEPTS
• Theory of computation → Parallel algorithms; Algorithm
design techniques; Dynamic programming; Divide and conquer .

KEYWORDS
string algorithms, longest common subsequence, semi-local string

comparison, parallel algorithms, divide-and-conquer, dynamic pro-

gramming, braid multiplication, parallel braid multiplication, bit-

parallel algorithms

ACM Reference Format:
Nikita Mishin, Daniil Berezun, and Alexander Tiskin. 2021. Efficient Parallel

Algorithms for String Comparison. In Proceedings of ACM Conference (Con-
ference’17). ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/

nnnnnnn.nnnnnnn

1 INTRODUCTION
The longest common subsequence (LCS) problem on a pair of strings

is a classical problem in string algorithms. Its standard solution is

based on straightforward dynamic programming [27]. Its extension,

the semi-local LCS problem, provides a more detailed comparison of

the input strings, without any increase in asymptotic running time.

Several semi-local LCS algorithms have been proposed previously

based on computations with an algebraic structure known as sticky
braid. In particular, a sticky braid corresponding to comparison of a

pair of input strings can be constructed either iteratively (iterative

∗
Also with JetBrains Research.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

Conference’17, July 2017, Washington, DC, USA
© 2021 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

combing) or recursively (recursive combing) [23]. However, to our

knowledge, none of these algorithms have yet been implemented.

In this paper, we explore a hybrid approach, combining iterative

and recursive combing. We also propose a novel bit-parallel LCS

algorithm, free of integer arithmetic and the associated carry propa-

gation delays that are typical of existing bit-parallel LCS algorithms.

Furthermore, we present an implementation of several LCS algo-

rithms, including recursive and iterative combing, as well as their

parallel versions using thread-level parallelism, and intra-processor

SIMD subword and bit parallelism, with a number of optimizations.

For experimental evaluation of the presented algorithms we

use two types of input: randomly generated strings and a real-life

dataset of virus genomes. Our experiments show that the running

times of our implementations of semi-local LCS algorithms corre-

spond to their theoretical estimations with no extra overheads and

are comparable to an implementation of standard LCS. Thus, the

algorithms have acceptable running times and are practically appli-

cable. Finally, we show that these algorithms have good potential

for parallelization and for practical usage in real-life data analysis.

2 RELATEDWORK
Classical dynamic programming algorithms for the LCS problem

and the closely related edit distance problem were developed by

Levenshtein [16], Wagner and Fischer [27], Hirschberg [11], Masek

and Paterson [17]. Approximate pattern matching by edit distance,

which is essentially a form of semi-local string comparison, was

studied by Sellers [22], Landau and Vishkin [15], Cole and Hariha-

ran [9]. Significant advances in approximate matching algorithms

have been made recently by Charalampopoulos et al. [7].

The most natural approach to the parallelization of dynamic

programming consists in iterating over the dynamic programming

grid in anti-diagonals of independent cells. An alternative approach,

presented by Aluru et al. [1], iterates over the grid in horizontal or

vertical tiles of cells, which are updated by a parallel prefix subrou-

tine. The ingenuous bit-parallel LCS algorithms by Crochemore et

al. [10] and Hyyrö [12] also iterate in vertical or horizontal tiles, re-

lying on efficient parallel hardware adders for a tile update; we note

that the design of such adders can also be expressed as a parallel

prefix computation, see e.g. [18].

A closely related topic to parallelilzation is cache-efficient com-

putation. A cache-oblivious version of dynamic programming was

proposed by Chowdhury and Ramachandran [8].

The type of algorithms presented in this work originates with

the local LCS algorithm of Schmidt [21], which was adapted for the

string-substring LCS problem byAlves at al. [4], who also developed

coarse-grained parallel algorithms for this problem in [2, 3].

The connection between the semi-local LCS problem and the

algebraic structure of sticky braids was exposed by Tiskin [23],

and a fast algorithm for sticky braid multiplication was developed

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA

independently by Tiskin [24] and Sakai [20]. A detailed study of

the semi-local LCS problem and its applications was presented

by P. Krusche in his Ph.D. thesis [14], along with a detailed pre-

sentation of the author’s implementations of several algorithms.

However, these results are a bit out of date now, as the technology

and the research field have moved forward. Moreover, while the

focus of [14] is on applications of the semi-local LCS problem to

various scientific problems, our study focuses on the development

and optimization of semi-local LCS algorithms as such, as well as

their comprehensive evaluation on strings of different length and

composition.

Russo [19] explored further the problem of sticky braid multipli-

cation, and evaluated several algorithms for that problem. Although

some experimental analysis of the algorithms’ implementation is

present in that work, it is unclear how thoroughly the algorithms

were optimized, and how their scalability and performance can be

compared against other approaches to semi-local LCS.

Recently, Tiskin [25] presented several new parallel semi-local

LCS algorithms in the bulk-synchronous parallelism (BSP) model

due to Valiant [26]. These algorithms are based on a parallel version

of sticky braid multiplication. In the current work, we explore

whether this approach can compete with previous algorithms for

semi-local LCS, and provide practical performance for comparison

of large strings. We also study what optimizations and tradeoffs are

possible in an implementation of semi-local LCS algorithms.

3 SEMI-LOCAL LCS
In this section we provide a brief explanation of the semi-local LCS

problem. For a detailed study of mathematics behind semi-local

LCS see for example [23].

Hereafter, we denote by𝑚 and 𝑛 the lengths of strings 𝑎 and 𝑏

respectively. We denote by 𝑎[𝑖 : 𝑗) a substring of string 𝑎 of length

𝑗−𝑖 , that starts at position 𝑖 and ends at 𝑗 exclusive (thus 𝑎[𝑖] stands
for 𝑎[𝑖 : 𝑖 + 1)), and by 𝐿𝐶𝑆 (𝑎, 𝑏) the length of the longest common

subsequence (LCS score) of 𝑎, 𝑏.

Definition 3.1. Matrix𝑀 is called a (sub)permutation matrix if all

its elements are zeros or ones and there are exactly (at most) one

non-zero in each row and each column.

Definition 3.2. The semi-local LCS problem asks for LCS scores
as follows [23]:

• string-substring: whole 𝑎 against every substring of 𝑏,

• substring-string: whole 𝑏 against every substring of 𝑎,

• prefix-suffix: every prefix of 𝑎 against every suffix of 𝑏,

• suffix-prefix: every prefix of 𝑏 against every suffix of 𝑎.

The solution of this problem is presented as square matrix 𝐻𝑎,𝑏 ,

called LCS matrix, where each quadrant contains a solution for each

of the above sub-problems:

𝐻𝑎,𝑏 =

[
suffix-prefix substring-string

string-substring prefix-suffix

]
(1)

This matrix is defined as follows:

Definition 3.3. [23] The LCS matrix 𝐻𝑎,𝑏 [𝑖, 𝑗] of size (𝑚 + 𝑛 +
1) × (𝑚 + 𝑛 + 1) is defined by:

𝐻 [𝑖, 𝑗] =
{
LCS(𝑎, 𝑏pad [𝑖 : 𝑗 +𝑚)) 𝑖 < 𝑗 +𝑚
𝑗 +𝑚 − 𝑖 otherwise

B

A

A

B

C

B

C

A

B A A B C A B C A B A C A

(a) Initial unreduced sticky braid

B

A

A

B

C

B

C

A

B A A B C A B C A B A C A

(b) Reduced sticky braid

Figure 1: Semi-local LCS solution represented by a sticky
braid

where 𝑖, 𝑗 ∈ [0 :𝑚+𝑛], 𝑏𝑝𝑎𝑑 :=?𝑚𝑏?𝑚 and ? is a wildcard character

that matches any other character

Note that the naïve algorithm for solving the problem immedi-

ately follows from this definition — an independent computation

of each matrix cell, which in the worst-case gives 𝑂 ((𝑛 +𝑚)2) ×
𝑂 ((𝑛 +𝑚)2) = 𝑂 ((𝑛 +𝑚)4) complexity. Nonetheless, there are a

number of algorithms that solve the semi-local LCS problem in time

𝑂 (𝑚𝑛), i.e. the same asymptotic time as the ordinary LCS problem.

These algorithms are based on several fascinating mathematical

properties of matrix 𝐻𝑎,𝑏 .

It is proved in [23], that matrix𝐻𝑎,𝑏 can be represented implicitly

by a permutation matrix 𝑃𝑎,𝑏 , called semi-local LCS kernel. This al-
lows us to store the solution of the semi-local LCS problem in linear

memory, but the time complexity of accessing an arbitrary element

of the output matrix grows from constant to polylogarithmic
1
. Ker-

nel 𝑃𝑎,𝑏 represents an implicit solution of semi-local LCS, and is

associated with an algebraic object called reduced sticky braid of or-

der𝑚 +𝑛. In this paper, we will not consider the algebraic nature of

sticky braids, and will instead use them as just a visual aid. A sticky

braid consists of𝑚 + 𝑛 monotone curves, called strands. Any pair

of neighboring strands can form a crossing; furthermore, a sticky

braid is called reduced, if any given pair of strands cross at most

once. Figure 1(a) shows original unreduced sticky braid for specific

input strings 𝑎 and 𝑏, while Figure 1(b) shows the corresponding

reduced sticky braid, where the endpoints of each strand are repre-

sented by a nonzero in a permutation matrix. We will exploit this

correspondence between permutation matrices and reduced sticky

braids, by using these two terms interchangeably.

Let 𝑎 = 𝑎′𝑎′′. Given kernels 𝑃𝑎′,𝑏 , 𝑃𝑎′′,𝑏 , kernel 𝑃𝑎,𝑏 can be ob-

tained via a special multiplication operation, sometimes called De-
mazure multiplication, defined for reduced sticky braids. Algorithms

for sticky braid multiplication were developed in [19, 20, 24]. Such

algorithms allow us to solve the semi-local LCS problem either

iteratively, or recursively; the recursive solution makes use of the

fast sticky braid multiplication algorithm of [24], running in time

𝑂 (𝑁 log𝑁) on sticky braids of order 𝑁 . In the following subsec-

tions, we provide a description of both these approaches.

3.1 Iterative combing algorithm
A sticky braid corresponding to the input strings 𝑎, 𝑏 is embedded

in the 𝑚 × 𝑛 LCS grid. The braid consists of 𝑚 + 𝑛 strands, 𝑚

1
There are several structures for range counting in permutations [5, 6, 13]

Efficient Parallel Algorithms for String Comparison Conference’17, July 2017, Washington, DC, USA

Listing 1: Iterative combing
1 fun iterative_combing(String a,Int m,String b,Int n):Perm
2 / / I n i t i a l i z a t i o n (phase 1)

3 for i in [0 .. m): h_strands[i] = i
4 for j in [0 .. n): v_strands[j] = j + m
5 / / B r a i d combing (phase 2)

6 for i in [0 .. m): for j in [0 .. n):
7 | | h_index = m - 1 - i
8 | | v_index = j
9 | | h_strand = h_strands[h_index]
10 | | v_strand = v_strands[v_index]
11 | | if a[i] == b[j] or h_strand > v_strand
12 | | | / / shou ld not c r o s s them

13 | | | swap(h_strands[h_index], v_strands[v_index])
14 / / R e s u l t i n g pe rmuta t i on c o n s t r u c t i o n (phase 3)

15 for l in [0 .. m): kernel[h_strands[l]] = n + l
16 for r in [0 .. n): kernel[v_strands[r]] = r
17 return kernel

beginning horizontally at the grid’s left edge, and 𝑛 vertically at

the grid’s top edge (see Figure 1). We call these strands horizontal

and vertical ones, and denote them by identifiers beginning with ℎ

and 𝑣 respectively. The strands are ordered so that the first strand

begins at the left edge of the bottom-left cell, and the last strand

begins at the top edge of the top-right cell. The strands enter and

leave every grid cell in pairs; a pair of strands never cross within

a match cell, and may or may not cross in a mismatch cell. While

it is easy to produce a braid for a given pair of strings 𝑎, 𝑏, it will

generally be unreduced; we need to transform it to an equivalent

reduced one in order to obtain the kernel 𝑃𝑎,𝑏 .

The iterative combing algorithm obtains a reduced braid by be-

ginning with a trivial reduced braid corresponding to an empty

grid without any matches. The processing of a cell 𝑐 [𝑖, 𝑗] refers to
adding a match in that cell, if one exists between 𝑎[𝑖] and 𝑏 [𝑗], and
then deciding whether the strands that hit the cell’s left and top

edges should cross inside this cell. If either 𝑎[𝑖] and 𝑏 [𝑗] match, or

else if this pair of strands have crossed previously, then the strands

should not cross in the current cell; otherwise they should. It is easy

to check whether a pair of strands have crossed previously, given

their starting indices (see 11th line in Listing 1). Thus, by processing

the cells left to right and top to bottom (for example, in row-major

order) we preserve the invariant that each pair of strands cross at

most once and, thereby, a reduced sticky braid will be obtained at

the end. The pseudocode of the algorithm is presented in Listing 1.

Iterative combing. First, we initialize our current braid as the

reduced sticky braid in which no pair of strands cross each other

(aka the identity braid). This initial braid satisfies trivially the invari-

ant of being reduced. Then the processing of each cell is performed

in row-major order
2
. Each cell is processed as described before.

Finally, we obtain the kernel as a straightforward mapping between

the initial and the final index of each strand.

3.2 Recursive combing
The second algorithm is based on the idea that one can split the

LCS grid into smaller parts and solve the semi-local LCS problem

independently in each part. Then, as each of these solutions rep-

resents a smaller reduced sticky braid, one can apply sticky braid

2
The processing could be performed in any order compatible with the top-to-bottom,

left-to-right dependencies of the cells

Listing 2: Reduced braid multiplication (Steady Ant)
1 fun braid_mult(Perm P, Perm Q, Int n) : Perm
2 if (n == 1) return [1]
3 P1, P2, map_P = P.split_with_map ()
4 Q1, Q2, map_Q = Q.split_with_map ()
5 R1 = inverse_map_row(braid_mult(P1, Q1), map_P)
6 R2 = inverse_map_col(braid_mult(P2, Q2), map_Q)
7 fresh_nzs = ant_passage(R1, R2)
8 R1 _good_nzs , R2 _good_nzs = filter(fresh_nzs , R1, R2)
9 return R1 _good_nzs + R2 _good_nzs + fresh_nzs

Listing 3: Recursive combing
1 fun recursive_combing (String a, String b) : String = when
2 a.len==1 and b.len==1 and a==b → return [[1,0], [0,1]]
3 a.len==1 and b.len==1 and a≠ b → return [[0,1], [1,0]]
4 _ → if flag = a.len > b.len then b, a = a, b / / swap

5 | b_left , b_right = b[:b.len/2], b[b.len /2:]
6 | l = recursive_combing(b_left , a)
7 | r = recursive_combing(b_right , a)
8 | m = compose(l, r)
9 | return flag ? m : transpose(m)

multiplication to compose these smaller braids to get the solution

for the original problem, making use of the following theorems.

Theorem 3.4. (LCS kernel composition) [23] The semi-local LCS
kernel for strings 𝑎 = 𝑎′𝑎′′, 𝑏 can be obtained via composition of 𝑃𝑎′,𝑏
and 𝑃𝑎′′,𝑏 by operation compose, which mainly uses braid multiplica-
tion: 𝑃𝑎,𝑏 = compose(𝑃𝑎′,𝑏 , 𝑃𝑎′′,𝑏) .

Theorem 3.5. (flip) [23] For strings 𝑎 and 𝑏, and indices 𝑖, 𝑗 ∈ [0 :
𝑚 + 𝑛 − 1]: 𝑃𝑎,𝑏 = 𝑃𝑏,𝑎 [𝑛 +𝑚 − 1 − 𝑖,𝑚 + 𝑛 − 1 − 𝑗] .

The pseudocode for sticky braid multiplication and the resulting

algorithm for the semi-local LCS problem are presented in Listing 2

and Listing 3 respectively.

Braid multiplication. As is proved in [24], the multiplication

of two braids can be performed by the algorithm in Listing 2, also

called the steady ant algorithm. This algorithm is based on a divide-

and-conquer approach. Let 𝑃 and 𝑄 be 𝑛 × 𝑛 permutation matrices

(assume that 𝑛 is even). We split each of them into matrices of size

𝑛
2
× 𝑛

2
as follows. Matrix 𝑃 is split vertically into a pair of 𝑛 × 𝑛

2

subpermutation matrices. Then the zero rows are deleted from each

of these matrices to obtain
𝑛
2
× 𝑛

2
permutation matrices 𝑃1 and

𝑃2 (Line 3). Matrix 𝑄 is split horizontally in an analogous way. In

order to reinsert the deleted rows (columns) after the recursive

calls, we need to keep the mapping between old and new row

(column) indices. The algorithm solves recursively the two resulting

subproblems of size
𝑛
2
. Then reverse index mapping is performed

to restore the 𝑛 × 𝑛 matrices.

Although intuitively, it might seem that in order to obtain the final

result, it would be sufficient to merge the nonzeros of matrices

R1 and R2 obtained as the solutions to the subproblems, this is

not quite true. To obtain the nonzeros that are still missing (fresh
nonzeros), a procedure called ant passage [24] needs to be performed

on R1 and R2 (Line 7). The nonzeros of R1 and R2 then need to be

filtered separating good nonzeros, remaining in the solution, from

bad nonzeros, which are deleted.

Recursive combing. The algorithm in Listing 3 follows the

divide-and-conquer approach. The recursion base is a pair of strings

of length 1. A match yields the identity kernel

(
1 0

0 1

)
and a mismatch

the zero kernel
(
0 1

1 0

)
The recursive step splits the LCS grid into

two subgrids vertically if 𝑎.𝑙𝑒𝑛 < 𝑏.𝑙𝑒𝑛, or horizontally otherwise.

Conference’17, July 2017, Washington, DC, USA

Listing 4: Parallel iterative combing
1 fun parallel_iterative_combing (String a, Int m, String

b, Int n) : Perm
2 fun inloop (Int up_bound ,Int h_index ,Int v_index): Void
3 | # pragma parallel loop
4 | for j in [0,up_bound):
5 | | h_strand = h_strands[h_index + j]
6 | | v_strand = v_strands[v_index + j]
7 | | p = a_reverse[h_index + j] == b[v_index + j] ||

(h_strand > v_strand)
8 | | cond_if_store(h_strands[h_index + j], v_strand , p)
9 | | cond_if_store(v_strands[v_index + j], h_strand , p)
10 | # pragma sync
11 / / i n i t phase

12 a_reverse = reverse(a)
13 # pragma parallel loops
14 for i in [0 .. m): h_strands[i] = i
15 for i in [0 .. n): v_strands[i] = i + m
16 # pragma sync
17 / / 1 s t phase

18 for anti_d_len in [0 .. m-1): inloop(anti_d_len +1,
m-1-anti_d_len , 0)

19 / / 2nd phase

20 for k in [0 .. full_len_diags): inloop(m, 0, k)
21 / / 3 rd phase

22 v_index = full_len_diags
23 for anti_d_len in [m-1 .. 1]:
24 | inloop(anti_d_len , 0, v_index ++)
25 / / b u i l d i n g o f perm

26 # pragma parallel loops
27 for l in [0 .. m): perm[h_strands[l]] = n + l
28 for r in [0 .. n): perm[v_strands[r]] = r
29 # pragma sync
30 return perm

B

A

A

B

C

B

C

A

B A A B C A B C A B A C A

(a) Unreduced braid as composition of sub-

braids

B

A

A

B

C

B

C

A

B A A B C A B C A B A C A

(b) Reduced subbraids

Figure 2: Load-balanced iterative combing

Then for each subgrid, a recursive call is performed. The resulting

kernels are composed via the compose routine that calls the braid
multiplication algorithm. Note that when the grid is split vertically,

a solution for 𝑃𝑏,𝑎 will be obtained, so we need to flip 𝑃𝑏,𝑎 to get

𝑃𝑎,𝑏 via Theorem 3.5.

4 PARALLEL ALGORITHMS
In this section, we describe parallel versions of the discussed algo-

rithms.

4.1 Parallel iterative combing
In Listing 4 we present a parallel version of iterative combing, run-

ning in time 𝑂 (𝑚𝑛
𝑡) on a machine that allows data-parallel opera-

tions on a vector of length 𝑡 . The initialization and the construction

of the output kernel are trivially parallelized, so we concentrate on

parallelizing the braid combing itself.

Given indices 𝑖, 𝑗 , the processing of cell 𝑐 [𝑖, 𝑗] depends on the

processing of cell 𝑐 [𝑖, 𝑗 − 1] to the left and the cell 𝑐 [𝑖 − 1, 𝑗] above.
Thus, the cells within a given anti-diagonal are independent of

each other, so the computation can proceed in anti-diagonals in

parallel using thread-level parallelism, potentially speeding up the

computation by the number of threads allowed in the system
3
. Note

that after the processing of each anti-diagonal, a synchronization of

worker threads is required, which may introduce its own overhead.

Without loss of generality, let𝑚 ≤ 𝑛. Then the computation is

split into three phases (see Figure 2). The length of the anti-diagonal

increases from 1 to𝑚 − 1 in the first phase, stays equal to𝑚 in the

second phase, and decreases from𝑚 − 1 to 1 in the third phase.

Unless the strings’ lengths are very different, variable anti-diago-

nal length in different iterations may result in poor load balancing.

Using braid algebra, we can consider the three subbraids each cor-

responding to a different phase of computation. We reorder the

iterations within each phase to improve load balancing, and then

we compose the resulting subbraids to get the final result. More

precisely, we can compute in parallel the first and the third braid,

so that in each iteration exactly𝑚 cells are processed. Besides im-

proving the algorithm’s load balancing, this approach also reduces

the number of synchronizations between the threads.

Now we describe the inner loop (routine inloop in Listing 4).

Characters of the input strings and elements of arrays h_strands,
v_strands are read consecutively in adjacent iterations

4
. Condi-

tional branching within the inner loop prevents the full application

of SIMD parallelization. Moreover, its presence creates problems

with branch prediction. However, branching may also have a posi-

tive effect by reducing the number of memory writes significantly.

Therefore, it is a priori unclear how an elimination of branching

would affect the performance in various scenarios.

Conditional branching can be eliminated using integer arithmetic

as follows:

h_strands[i] = h_strand ∗ (1 − p) + p ∗ v_strand
v_strands[j] = v_strand ∗ (1 − p) + p ∗ h_strand

This solution allows us to employ fully SIMD parallelism but

requires the use multiplication and addition operations. Given that

𝑝 can only take two values (0 and 1) and using bitwise Boolean

logic on integers, we can eliminate branching as follows
5
:

h_strands[i] = (h_strand & (p − 1)) | ((−p) & v_strand)
v_strands[j] = (v_strand & (p − 1)) | ((−p) & h_strand)

Such an approach allows us to replace multiplication instructions

with bitwise instructions that are far more effective.

Finally, we can optimize SIMD parallelism utilization in case

𝑚 + 𝑛 ≤ 2
16
. We use 16-bit machine words for strand numbers.

4.2 Parallel recursive combing
We now present a parallel version of the recursive combing algo-

rithm. Since function compose, which is the heart of this algorithm,

relies on braid multiplication we fist give a parallel version of the

braid multiplication algorithm.

3
The algorithm is structurally very similar to the classical dynamic programming LCS

algorithm with the only difference that cell processing depends on fewer previous cells.

For dynamic programming LCS there is an additional dependency on cell 𝑐 [𝑖−1, 𝑗 −1]
above and to the left.

4
If we reverse 𝑎 and store it in 𝑎_𝑟𝑒𝑣𝑒𝑟𝑠𝑒 then access to the latter one would be

consecutive

5
The standard representations of −1 is a machine word with all bits set to one

Efficient Parallel Algorithms for String Comparison Conference’17, July 2017, Washington, DC, USA

Listing 5: Parallel Steady Ant
1 fun parallel_steady_ant (Perm P,Perm Q,Memory used_block ,
2 Memory free_block ,Map[Pair[Perm ,Perm],Perm] precalc ,
3 Int k, Memory memory_block_indices) : Perm
4 if (n <= k) return precalc [(P,Q)]
5 P1,P2=split_with_mapping_on_prealloc_memory(P,free_space)
6 Q1,Q2=split_with_mapping_on_prealloc_memory(Q,free_space)
7 # parallel task
8 R1 = parallel_steady_ant(P1, Q1,free_space ,used_block ,
9 precalc , k, memory_block_indices + some_shift)
10 # parallel task
11 R2 = parallel_steady_ant(P2,Q2,free_space+n,used_space+n,
12 precalc ,k, memory_block_indices+some_other_shift)
13 # task wait
14 P, Q = inverse_mapping(R1, R2)
15 fresh_nzs = ant_passage(P, Q)
16 P_good_nzs = filter(fresh_nzs , P)
17 Q_good_nzs = filter(fresh_nzs , Q)
18 return P_good_nzs + Q_good_nzs + fresh_nzs

Listing 6: Parallel hybrid combing
1 fun parallel_rec_combing (String a, String b,
2 Map[Pair(Perm , Perm), Perm] precalc , Int threshold)
3 : Perm = when
4 | a.len + b.len <= threshold →
5 | | return parallel_iterative_combing(a,a.len ,b,b.len)
6 | a.len < b.len →
7 | | b_left , b_right = b[:b.len/2], b[b.len /2:]
8 | | l = parallel_rec_combing(b_left ,a,precalc ,threshold)
9 | | r = parallel_rec_combing(b_right ,a,precalc ,threshold)
10 | | m = parallel_compose(l, r, precalc)
11 | | / / need to f l i p to ge t k e r n e l f o r a a g a i n s t b

12 | | return get_permutation_ab(m)
13 | default →
14 | | a_left , a_right = a[:a.len/2], a[a.len /2:]
15 | | l = parallel_rec_combing(a_left ,b,precalc ,threshold)
16 | | r = parallel_rec_combing(a_right ,b,precalc ,threshold)
17 | | return parallel_compose(l, r, precalc)

4.2.1 Parallel braid multiplication. The parallel version of braid

multiplication is presented in Listing 5. There are three potential

bottlenecks in parallelizing the algorithm in Listing 2.

(1) In contrast with the iterative combing algorithm, fine-grained

parallelism (thread-level and SIMD) is no longer applicable:

both the mapping stage and the ant passage are strictly se-

quential, since neither the indices of zeros rows and columns,

nor the steps of the ant, can be determined beforehand.

(2) Deep recursion may affect the algorithm’s performance.

(3) The recursion requires𝑂 (𝑛 log𝑛)memory since in each level

it allocates 𝑂 (𝑛) memory for permutations and index map-

pings.

We first note that the problem with lack of fine-grained paral-

lelism is not critical, since there is sufficient coarse-grained (processor-

level) parallelism in the algorithm: the subtasks in the same recur-

sion level are independent of each other.

Recursion depth can be reduced by pre-computation as follows.

We cut off several levels at the bottom of the recursion tree by

pre-computing products of small matrices. Given some 𝑁 there are

𝑁 ! distinct permutation matrices of size 𝑁 , thus, there are 𝑁 ! × 𝑁 !

possible pairs. For small 𝑁 we can pre-compute the product for

each possible pair and store it in one machine word
6
. Then we use

these pre-computed products as the base for the recursion.

6
In our implementation we precalculate all the (5!)2 = 14400 products of 5 × 5

permutation matrices, as well as the products of all smaller matrices. Such a matrix is

stored in a 32-bit machine word as a top-left corner submatrix of an 8× 8 permutation

matrix. The latter is represented as an array of 8 tetrades, where the 𝑘-th tetrade

provides the column index of the nonzero in row 𝑘 . In principle, it could be just

To reduce the memory requirements for permutation matrices

one may use memory preallocation as follows. Let 𝑃 and 𝑄 be

the input permutation matrices each of size 𝑁 for the algorithm’s

recursive call. Since each matrix requires memory
7
exactly 2𝑁 ,

they both are stored in a memory block of size 4𝑁 denoted by

memory_block. The resulting matrices 𝑃1, 𝑄1, 𝑃2, 𝑄2 are placed, in

that order, in a memory block denoted by free_space of size 4𝑁 .

Since the information from 𝑃 and 𝑄 is no longer required, the

associated memory block may be split into two smaller blocks

each of size 2𝑁 and used by the lower recursion levels. Thus, the

memory requirement for storing permutation matrices is indeed

reduced to exactly 8𝑁 . Additionally, we can preallocate a memory

block for the mappings in order to reduce the number of calls to

the memory manager. Nonetheless, the memory requirement for

memory mappings is still 𝑂 (𝑁 log𝑁) since we need to know all

previous mappings.

4.2.2 Parallelizing the outer recursion. Similarly to parallel braid

multiplication, coarse-grained parallelism can also be used for the

outer recursion of the recursive combing algorithm, by using the

recursion to generate the required number of independent subprob-

lems.

4.3 Parallel hybrid combing
The iterative and the recursive combing algorithms can be combined

to form a hybrid algorithm presented in Listing 6. The algorithm

follows the structure of recursive combing up to some fixed recur-

sion level, and then switches to iterative combing. Thus, we enable

both coarse-grained and fine-grained parallelism.

We can apply several optimizations to this algorithm (Listing 7).

First, we eliminate outer recursion in order to avoid the associated

overhead (especially since the braid multiplication subprocedure is

itself recursive).We also implement a flexible partition scheme. Note

that in each step of the reduction, we need to decide on performing

either a horizontal or a vertical compose. The order in which the

compose operations are performed can affect the overall running

time, since the compose operation itself is log-linear, rather than just

linear. We use the following heuristic: always merge by the longest

axis of a subgrid, so that the subgrid sizes are always approximately

balanced.

The second optimization refers to the aforementioned use of

16-bit machine words for strand indices in the iterative combing

algorithm. In order to apply this optimization, we need to partition

the grid in a such way that the total numbers of strands within each

lowest-level sub-grid does not exceed 2
16
.

4.4 Bit-parallel iterative combing
In some situations, only the global LCS score is of interest, and

the alphabet is small (e.g. binary). In such cases, we can develop

a bit-parallel algorithm based on the algorithm of Listing 4. The

algorithm runs in 𝑂 (𝑚𝑛
𝑤) bit operations, where𝑤 is the machine

word size in bits. In contrast to bit-parallel LCS algorithms by

Crochemore et al. [10] and Hyyrö [12], which iterate over the grid

in vertical or horizontal tiles, our algorithm iterates over the grid

feasible to also precompute all the (6!)2 = 518400 products of 6 × 6 permutation

matrices, but probably not any larger ones.

7
The permutation matrix of size 𝑁 can be represented as two lists of size 𝑁 .

Conference’17, July 2017, Washington, DC, USA

Listing 7: Parallel hybrid combing (Optimized)
1 fun parallel_rec_combing (String a, String b,
2 Map[Pair(Perm , Perm), Perm] precalc) : Perm
3 m_outer , n_outer = optimal_split(a.len ,b.len ,n_thds)
4 sub_grids = new array[m_outer][n_outer]
5 #pragma omp parallel master taskloop
6 for (i,j) in [0 .. m_outer)×[0 .. n_outer):
7 | sub_grids[i][j] =
8 iterative_combing_wrapper(a,b,i,j,m_outer ,n_outer)
9 #pragma sync
10 steps = ceil(log2(m_outer)) + ceil(log2(n_outer))
11 m_inner , n_inner = a.len / m_outer , b.len / n_outer
12 new_m_outer , new_n_outer = m_outer , n_outer
13 repeat steps times:
14 | row_reduction = m_outer < n_outer
15 / / composing b r a i d s by subg r i d ' s l o n g e s t s i d e

16 | if n_outer > 1 && m_outer > 1
17 | then row_reduction = m_inner >= n_inner
18 | if row_reduction
19 | then n_inner *= 2, new_n_outer = ceil(n_outer /2)
20 | else m_inner *= 2, new_m_outer = ceil(m_outer /2)
21 | #pragma omp parallel master taskloop
22 | for (i,j) in [0 .. new_m_outer)×[0 .. new_n_outer):
23 | | if (row_reduction)
24 | | / / compose subg r i d p a i r s on common v e r t i c a l s i d e

25 | | then reduction_in_row(i,j, precalc)
26 | | / / compose subg r i d p a i r s on common h o r i z o n t a l s i d e

27 | | else reduction_in_col(i,j, precalc)
28 | #pragma sync
29 | n_outer ,m_outer = new_n_outer , new_m_outer
30 return sub_grids [0][0] / / r e s u l t i n g reduced b r a i d

I

O

O

O

O I O O

(a) ℎ = 1111

𝑣 = 0000

I

O

O

O

O I O O

(b) ℎ = 0011

𝑣 = 0011

I

O

O

O

O I O O

(c) ℎ = 0111

𝑣 = 0001

I

O

O

O

O I O O

(d) ℎ = 0011

𝑣 = 0101

I

O

O

O

O I O O

(e) ℎ = 0001

𝑣 = 1101

Figure 3: Snapshots of grid processing for string 𝑎 = "1000",
𝑏 = "0100"

in anti-diagonal blocks
8
. Furthermore, while the aforementioned

algorithms use integer addition for propagating a strand as a carry

across the tile, our algorithm uses only Boolean logic and shifts.

Also, no precomputed table is needed.

We consider strings 𝑎, 𝑏 over a binary alphabet. For simplicity,

let us assume𝑚, 𝑛 are both multiple of𝑤 .

We partition strings 𝑎, 𝑏 into groups of𝑤 characters. For string 𝑎,

both the groups and the characters within each group are stored in

reverse order (most significant bit first), and for string 𝑏 in normal

order (least significant bit first). Similarly, the array of horizontal

strands is stored in reverse order, and vertical strands in normal

order. The initialization of strands is similar to that of iterative

combing (Listing 4) but differs in that all the horizontal strands’

indices are set to ones while all vertical ones to zeros. So to check

if a pair of strands have previously crossed we need to check if the

horizontal strand’s index is less than the vertical one’s.

Next, we need to implement the inner loop logic of iterative

combing (Listing 4). The storage of horizontal strands and charac-

ters of string 𝑎 in reverse order within machine words allows us

to implement this logic via shifts and Boolean operators. As we

process an antidiagonal block, shifts are used to align characters

of string 𝑎 against string 𝑏, and horizontal strands against vertical

8
Thus, our shift in computation pattern with respect to traditional bit-parallel tech-

niques is, in a way, the opposite of the shift in [1] from the anti-diagonal to the vertical

or horizontal pattern for standard dynamic programming.

ones. After the alignment, we use combing logic on binary strand

indices, which is analogous to the combing logic on integers.

Consider an example. Let 𝑎 = "1000", 𝑏 = "0100", 𝑤 = 4, so

each string can be represented by a single machine word. First, we

encode both strings into machine words: 𝑎′ = 10002, 𝑏
′ = 00102

and process each antidiagonal of a grid (see the visualization on

Figure 3). After the initialization step we have initialized 𝑣 (vertical)

and ℎ (horizontal) strands: ℎ = 11112, 𝑣 = 00002.

Consider the processing of the second antidiagonal of the grid

(see Figure 3(b)). At this stage ℎ = 11112, 𝑣 = 00002, so we need to

process two cells on this antidiagonal. We proceed as follows:

• compare string characters: 𝑠 =!((𝑎′ ≫ 2) ⊕ 𝑏)
• calculate mask to select the active bits: mask = 00112

• evaluate combing condition: c = mask & (𝑠 | (!(ℎ ≫ 2) & 𝑣))
• save 𝑣 ′ = 𝑣

• update 𝑣 = (!𝑐 & 𝑣) | (𝑐 & (ℎ ≫ 2))
• update 𝑐 = 𝑐 ≪ 2

• update ℎ = (!𝑐 & ℎ) | (𝑐 & (𝑣 ′ ≪ 2))
Upon processing all the antidiagonals, the LCS score can be

obtained via Kernighan’s Algorithm that counts all the set bits

in horizontal strands: |𝑎 | − set bits in h. The resulting algorithm is

presented in Listing 8.

We can apply several optimizations to the above algorithm. First,

it is clear that when processing some sub-grid of size 𝑤 ×𝑤 , we

do not need to load associated words for every antidiagonal of

this sub-grid i.e h_vec, v_vec, a_vec, b_vec . It suffices to load all

required data only once to the registers, then to write back the

updated data after processing the sub-grid. This optimization is

already presented in Listing 8.

Second, by studying the truth table for the inner loop logic we

can find alternative Boolean formulas that have the same truth table

and require fewer operations. We believe the following formula for

an update of 𝑣 to be optimal in terms of the number of operations
9
:

𝑣 = ((ℎ ≫ 𝑘) | !mask) & (𝑣 | (!((𝑎 ≫ 𝑘) ⊕ 𝑏) & mask))

Instead of updating ℎ by a similar formula, we can observe that

ℎ is determined uniquely, given the new 𝑣 and old 𝑣 ′ indices of
vertical strands and the old value for ℎ. Indeed, 𝑣 and ℎ are updated

by swapping bits between them in certain positions, therefore the

update for ℎ can be performed by filling in the “missing bits”: ℎ =

ℎ ⊕ (𝑣 ≪ k) ⊕ (𝑣 ′ ≪ k). Therefore, applying this optimization

reduces the number of operations from 18 to 12 inside the loop
10
.

The third optimization consists in eliminating one operation

when comparing characters of the input strings. Since !(𝑎 ⊕ 𝑏) is
the same as !𝑎 ⊕ 𝑏, we can store !𝑎 instead of 𝑎 and eliminate one

operation from the formula.

5 EVALUATION
In this section we use the following notation for implementations

of various algorithms. For braid multiplication algorithms: precalc
— with the precalc optimization, memory — with memory prealloca-

tion and optimized memory management, as described previously,

9
Note that this formula for the upper-left of sub-grid; for the lower-right part of the

sub-grid formula is the same but ≪ is used

10𝑚𝑎𝑠𝑘 as well as !𝑚𝑎𝑠𝑘 is a compile-time constant

Efficient Parallel Algorithms for String Comparison Conference’17, July 2017, Washington, DC, USA

(a) Speedup of sequential braid multiplication optimiza-

tions relative to unoptimized version

(b) Scalability of parallel braid multiplication (c) Braid multiplication as subroutine of iterative comb-

ing

Figure 4: Experimental results for braid multiplication

(a) Random strings of equal lengths, 𝜎 = 1 (b) Random strings of equal lengths, 𝜎 = 26 (c) Real-life strings

Figure 5: Comparison of the running time of sequential implementations

(a) Random strings, 𝜎 = 1 (b) Random strings, 𝜎 = 26 (c) Real-life strings

Figure 6: Tradeoff between sequential performance and parallelization potential

(a) Random strings, 𝜎 = 1,𝑚 = 𝑛 = 100000 (b) Random strings, 𝜎 = 26,𝑚 = 𝑛 = 100000 (c) Real-life strings,𝑚 = 124884,𝑛 = 134226

Figure 7: Comparison of running time of implementations depending on the number of threads
combined — with both optimizations above. For linear space dy-

namic programming LCS algorithms:

• prefix_rowmajor — row-major computation order,

• prefix_antidiag_SIMD— anti-diagonal computation order

and SIMD parallelism.

For semi-local LCS algorithms:

• semi_rowmajor — Algorithm 1,

• semi_antidiag — Algorithm 4, anti-diagonal computation

order,

• semi_antidiag_SIMD — as semi_antidiag but with SIMD

parallelism instead of branching, as described previously,

• semi_load_balanced—as semi_antidiag_SIMD but in three
independent phases followed by braid multiplication, as de-

scribed previously,

• semi_hybrid — Algorithm 6,

• semi_hybrid_iterative — Algorithm 7 with 16-bit strand

indices.

For bit-parallel LCS algorithms:

• bit_old — Algorithm 8,

• bit_new_1—Algorithm 8 with memory access optimization

and original Boolean formula,

• bit_new_2 — Algorithm 8 with all described optimizations

including an optimized formula.

We have implemented these algorithms
11

in the OpenMP frame-

work that supports multi-processor and multi-threaded programs

with shared memory. The implementations were compiled via G++

11
https://github.com/NikitaMishin/semilocal

Conference’17, July 2017, Washington, DC, USA

(a) Random strings, 𝜎 = 1,𝑚 = 𝑛 = 100000 (b) Random strings, 𝜎 = 26,𝑚 = 𝑛 = 100000 (c) Real-life strings,𝑚 = 124884, 𝑛 = 134226

Figure 8: Performance of semi-local LCS algorithms
Listing 8: Bit-parallel algorithm

1 fun bp_iterative_combing (String a, String b): Int
2 a_bin ,b_bin = encode_reverse(a), encode(b)
3 h, v = init_all_ones (), init_all_zeroes ()
4 / / up_bound i s c u r r e n t a n t i d i a g l en

5 fun inloop(Int up_bound ,Int h_index ,Int v_index): Void
6 | #pragma parallel loop
7 | for j in [0 .. up_bound):
8 | | h_vec , v_vec = h[h_index+j],v[v_index+j]
9 | | a_vec , b_vec = a_bin[h_index+j],b_bin[v_index+j]
10 | | mask = 1 / / l s b s e t to one , rema in ing b i t s t o 0

11 | #pragma unroll / / upper l e f t t r i a n g l e

12 | for shift in [strands_per_word - 1 .. 0):
13 | | h_s ,v_s = h_vec >> shift , v_vec << shift
14 | | / / compute s t r a nd combing c ond i t i o n

15 | | cond = mask &
16 (~((a_vec >> shift) ^ b_vec) | (~h_s & v_vec))
17 | | inv_cond = ~cond
18 | | / / per form combing

19 | | v_vec = (inv_cond & v_vec) | (cond & h_s)
20 | | cond <<= shift
21 | | inv_cond = ~cond
22 | | h_strand = (inv_cond & h_vec) | (cond & v_s)
23 | | mask = (mask << 1) | Input (1)
24 | ... / / p r o c e s s main a n t i d i a g on a l , no s h i f t s needed

25 | #pragma unroll / / lower − r i g h t t r i a n g l e

26 | for shift in [1 .. strands_per_word):
27 | | mask <<= 1
28 | | ... / / same l o g i c as in 1 s t loop but symmetr ic c a s e

29 | h[h_index + j], v[v_index + j] = h_vec , v_vec
30 / / phase 1 : upper l e f t t r i a n g l e

31 for diag_len in [0 .. m/w-1):
32 | inloop(diag_len + 1, m/w-1-diag_len , 0)
33 / / phase 2 : main p a r a l l e l o g r am

34 for k in [0 .. full_len_diags/w): inloop(m / w, 0, k)
35 start_j = full_len_diags/w
36 / / phase 3 : lower − r i g h t t r i a n g l e

37 for diag_len in [m/w -1..1]: inloop(diag_len ,0,start_j ++)
38 return a.len - count_ones(h)

10.2.0 with "-std=c++17 -fopenmp -march=native -O3" op-

tions. The experiments were performed on a workstation with

AMD Ryzen-7-3800X processor with 8 cores and 16 threads and

Manjaro Linux 21.0.1 operating system. Both synthetic and

real-life strings were used as input. Synthetic strings were ob-

tained as randomly generated integer sequences of length up to

10
6
, with characters sampled from a normal distribution with zero

mean and standard deviation 𝜎 , and then rounded towards zero

(so that, for example, the proportion of zero characters for 𝜎 = 1

is
1

2

(
erfc(−1/

√
2) − erfc(1/

√
2)
)
≈ 0.683). By varying parameter 𝜎

we can emulate different scenarios that include high, medium, and

low matching frequency. The real-life strings represent genome

sequences of various viruses of lengths up to 134 000 from Na-

tional Center for Biotechnology Information
12
, mostly from project

PRJNA485481.

12
https://www.ncbi.nlm.nih.gov/, last access 23.04.2021

5.1 Braid Multiplication
We have implemented the proposed sequential algorithm for braid

multiplication with the previously described optimizations. To see

how these optimizations affect the running time of the algorithm,

we have tested them on randomly generated input permutation

matrices of sizes up to 10
7
. The relative speedup of each optimiza-

tion is presented in Figure 4(a). While both optimizations improve

the overall running time, their speedups decrease with increasing

matrix size and converge to a constant. For the precalc optimization

this is due to the fact that the linear time saving provided by the

precomputation becomes dominated by the superlinear growth in

main computation. The memory preallocation optimization is less

sensitive to matrix size. For matrix size 10
7
(the largest size in our

experiments), these optimizations together improve the speed of

the algorithm approximately by a factor of 1.75.

Further, we have implemented a parallel version of the braid

multiplication algorithm proposed in Listing 5. To see how well it

scales we have tested our implementation on permutation matrices

of fixed size 10
7
, while varying the threshold at which the algo-

rithm switches to sequential computation, in the range from zero

(no switching) to six (matrices at recursion level 6 are multiplied

sequentially). Figure 4(b) shows that the optimal threshold value is

4, which provides a speedup of 3.7.

We have also compared the running time of two sequential ver-

sions of iterative combing: the basic and the load-balanced one.

Figure 4(c) shows that the performance of these two versions is

quite similar: this is expected, since load balancing only becomes

useful for parallel computation. The same Figure also shows the

performance of braid multiplication, which is used as a subroutine

by the load-balanced iterative combing algorithm. We see that braid

multiplication contributes a small fraction to the overall running

time.

To summarize, we see that the braid multiplication algorithm

performs well as a sequential algorithm and has moderate parallel

scalability.

5.2 Semi-local LCS algorithms
Although, theoretically, algorithms for the LCS and the semi-local

LCS problems have the same asymptotic running time, the practical

behavior of semi-local LCS algorithms has been unclear. The re-

sults in Figure 5 demonstrate that the iterative combing algorithm

is of comparable running time with prefix LCS and thus is appli-

cable in practice. Even though the branchless version of iterative

combing might have a higher number of memory writes, the in-

troduction of SIMD instructions together with the elimination of

https://www.ncbi.nlm.nih.gov/

Efficient Parallel Algorithms for String Comparison Conference’17, July 2017, Washington, DC, USA

(a) Memory access optimization for bit-parallel algo-

rithm

(b) Boolean formula optimization for bit-parallel algo-

rithm

(c) Running times of different algorithms

(d) Performance of semi-local LCS algorithms (e) Relative performance of bit-parallel algorithm

against semi-local LCS

Figure 9: Performance of different algorithms on binary sequences of length 10
6

branch prediction makes a significant impact. As our results show

(see Figure 5) such an approach is the fastest on both the synthetic

and the real-life dataset. Moreover, the effect of optimizations is

greater on semi-local LCS than on prefix LCS due to better data

locality since the latter has an additional dependency on the penulti-

mate antidiagonal. The performance disadvantage of the branching

version relative to the SIMD version is partially compensated by

the fact that the former makes fewer memory writes, especially

when the input strings are dissimilar. Overall, SIMD parallelism

provides a speedup by a factor of 5.5 to 6 relative to the version

with branching.

The coarse-grained parallelization potential of Algorithm 6 is

expressed in the depth of the threshold at which the computation

switches from recursive to iterative combing. A threshold of 0 in-

dicates pure iterative combing with no recursion. Increasing the

threshold depth creates independent subproblems, which can be

executed in parallel; however, that affects negatively the imple-

mentation’s sequential performance, and thus this threshold has to

be chosen carefully. Figure 6 demonstrates this tradeoff between

coarse-grained parallelization potential and sequential performance

for various input string lengths. For example, for string lengths

under 10
5
, the appropriate threshold depth is 3 or less. Moreover,

we see that as the input strings become longer, the appropriate

threshold becomes deeper.

Figure 7 demonstrates that the load-balancing optimization has

the opposite effect to what was expected, slowing down the com-

putation. This is because synchronizations, in fact, require much

less time compared to braid multiplication. However, it is possible

that with a longer string 𝑏 and more threads being used, this opti-

mization can become useful. Figure 7 also shows that the hybrid

algorithm performs better than iterative combing.

Figure 8 demonstrates the scalability of several algorithms. The

maximum speedup is by a factor of 4, achieved on synthetic strings

of length 10
5
with seven threads, which is one fewer than the

number of cores on the testing machine. For real-life strings, similar

results with five-fold speedup are observed. Note that since our grid

partitioning heuristic does not always provide the best possible

partition and composition order, the performance of the hybrid

version can be quite erratic (see, for example, the speedup on five

threads).

Figure 9 demonstrates results for large binary strings of lengths

10
6
. First, Figure 9(a) shows that memory access optimization no-

ticeably improves the running time of bitwise algorithm, especially

when it works in multithreaded mode. This can be explained by a

reduction in false-sharing among threads and the resulting signifi-

cant drop in the number of synchronizations needed. In fact, on 16

threads, this optimization improves the running time by as much

as a factor of 4.5. Second, optimized Boolean formula, as expected,

improves the running time by a factor of 1.48 (Figure 9(b)). Third,

although the semi-local LCS algorithm demonstrates a speedup by

a factor of 4 to 5 on strings of length up to 10
5
, Figure 9 shows that

both implementations nearly reached an optimal speedup of 8 on

long synthetic strings (Figures 9(d), 9(c)). For example, the parallel

hybrid algorithm runs at a 7.95 speedup against its sequential ver-

sion. And last but not least, Figures 9(c), 9(e) demonstrate that our

bit-parallel algorithm is faster than hybrid and iterative combing

by a factor of approximately 16 and 29, respectively.

6 CONCLUSION
In this paper, we have presented what is, to our knowledge, the first

implementation of several semi-local LCS algorithms, including

recursive and iterative combing, and their experimental evalua-

tion. We have implemented both sequential and parallel algorithms,

with a number of optimizations; for parallel algorithms, we have

used both coarse-grained and fine-grained parallelism. In the ex-

periments, we have used two input datasets: a synthetic dataset of

randomly generated strings, and a real-life dataset of virus genomes.

Conference’17, July 2017, Washington, DC, USA

The experiments show that semi-local LCS algorithms have com-

parable running time with the standard dynamic programming LCS

algorithm on both synthetic and real-life data. For input sequences

of length up to 10
6
, the application of 8-fold SIMD parallelism (a

256-bit AVX vector of 32-bit integers) gave a speedup by approx-

imately a factor of 5.5 to 6 for the branchless version of iterative

combing algorithm on both datasets. Experiments show that most

of the suggested optimizations have a positive impact on the parallel

performance of the algorithms.

New hybrid approach (algorithm from Listing 7) for semi-local

LCS has been presented. We have shown that the hybrid algo-

rithm performs better than the iterative combing algorithm. For the

LCS problem on a binary alphabet, we have developed a novel bit-

parallel algorithm that is based on the iterative combing approach.

In contrast with the existing algorithms [10, 12], our algorithm

uses only Boolean operations and shifts (no integer arithmetic), and

requires no precomputed tables. Our new algorithm demonstrates

a speedup against the hybrid and the iterative combing algorithms

by a factor of 16 and 29 respectively.

Furthermore, we have implemented the sequential sticky braid

multiplication algorithm presented in [24] with a number of opti-

mizations, as well as its coarse-grained parallel version, and evalu-

ated them on randomly generated input permutation matrices of

size up to 10
7
. The optimizations of the sequential algorithm give a

speedup by approximately a factor of 1.75, and the parallel version

has moderate scalabilty, with maximum speedup by approximately

a factor of 3.7. We have also established that the braid multipli-

cation algorithm performs well and can be used successfully as

a subroutine of semi-local LCS algorithm to improve its running

time.

Further work is possible in several directions. First, we would

like to exploit the new opportunities provided by recent devel-

opments in intra-pocessor SIMD parallelism, in particular Intel’s

AVX-512 processor architecture. This new architecture provides

several sources of potential speedup for our algorithms: apart from

increasing the SIMD vector registers’ size to 512, it also introduces

(as part of the AVX-512BW instruction subset) SIMD arithmetic on

8-bit and 16-bit integers. In some applications of semi-local LCS,

representing strand indices with such reduced precision is feasible,

resulting in 512/8 = 64-fold parallelism, and therefore much higher

potential speedups. Besides these quantitative improvements, there

is an important qualitative one: the AVX-512 instruction set con-

tains new instructions formasked pairwiseminimum andmaximum

evaluation on a pair of SIMD vectors. This is a perfect match to

the logic of the inner loop in the iterative combing algorithm, that

should enable its elegant and efficient implementation.

The second direction of future work is further study and eval-

uation of the bit-parallel LCS algorithm presented in this paper.

It is yet unclear how well this algorithm can be generalized to

an arbitrary alphabet and how well it would perform relative to

state-of-the-art bit-parallel algorithms. The workload imbalance

introduced by the antidiagonal computation pattern appears to

be a bottleneck that should be studied, since its elimination could

theoretically provide a boost by a factor of 2.

Our experiments could also be extended by implementing the

algorithms on other popular parallel platforms, including GPU and

FPGA. It would be especially interesting to measure performance

of our algorithm against state-of-the-art bit-parallel algorithms on

FPGA, since this platform is particularly sensitive to additional

memory requirements and to delays induced by carry propagation

in arithmetic operations.

Finally, our techniques could be used for analysis of patterns in

real-life data, for example, in time series data.

REFERENCES
[1] Srinivas Aluru, Natsuhiko Futamura, and Kishan Mehrotra. 2003. Parallel bio-

logical sequence comparison using prefix computations. J. Parallel and Distrib.
Comput. 63, 3 (2003), 264–272.

[2] C E R Alves, E N Cáceres, F Dehne, and S W Song. 2002. Parallel dynamic

programming for solving the string editing problem on a CGM/BSP. In Proceedings
of ACM SPAA. New York, New York, USA, 275–281.

[3] C E R Alves, E N Cáceres, and S W Song. 2006. A Coarse-Grained Parallel

Algorithm for the All-Substrings Longest Common Subsequence Problem. Algo-
rithmica 45, 3 (2006), 301–335.

[4] C E R Alves, E N Cáceres, and S W Song. 2008. An all-substrings common

subsequence algorithm. Discrete Applied Mathematics 156, 7 (2008), 1025–1035.
[5] Jon Louis Bentley. 1980. Multidimensional divide-and-conquer. Commun. ACM

23, 4 (1980), 214–229.

[6] Timothy M Chan and Mihai Pătraşcu. 2010. Counting inversions, offline orthogo-

nal range counting, and related problems. In Proceedings of the twenty-first annual
ACM-SIAM symposium on Discrete Algorithms. SIAM, 161–173.

[7] Panagiotis Charalampopoulos, Tomasz Kociumaka, and Philip Wellnitz. 2020.

Faster Approximate Pattern Matching: A Unified Approach. In 2020 IEEE 61st
Annual Symposium on Foundations of Computer Science (FOCS). 978–989.

[8] R A Chowdhury and V Ramachandran. 2006. Cache-oblivious dynamic program-

ming. In Proceedings of SODA. 591–600.
[9] R Cole and R Hariharan. 2002. Approximate String Matching: A Simpler Faster

Algorithm. SIAM J. Comput. 31 (2002), 1761–1782.
[10] Maxime Crochemore, Costas S Iliopoulos, Yoan J Pinzon, and James F Reid. 2001.

A fast and practical bit-vector algorithm for the longest common subsequence

problem. Inform. Process. Lett. 80, 6 (2001), 279–285.
[11] D S Hirschberg. 1975. A linear space algorithm for computing maximal common

subsequences. Commun. ACM 18, 6 (1975), 341–343.

[12] Heikki Hyyrö. 2004. Bit-parallel LCS-length computation revisited. In Proc. 15th
Australasian Workshop on Combinatorial Algorithms (AWOCA 2004). Citeseer,
16–27.

[13] Joseph JáJá, Christian W Mortensen, and Qingmin Shi. 2004. Space-efficient

and fast algorithms for multidimensional dominance reporting and counting. In

International Symposium on Algorithms and Computation. Springer, 558–568.
[14] Krusche. 2010. Parallel String Alignments: Algorithms and Applications.Warwick

University.

[15] G M Landau and U Vishkin. 1989. Fast parallel and serial approximate string

matching. Journal of Algorithms 10, 2 (1989), 157–169.
[16] V Levenshtein. 1965. Binary codes capable of correcting spurious insertions and

deletions of ones. Problems of Information Transmission 1 (1965), 8–17.

[17] William J. Masek and Michael S. Paterson. 1980. A faster algorithm computing

string edit distances. J. Comput. System Sci. 20, 1 (1980), 18–31.
[18] Aradhana Raju, Richi Patnaik, Ritto Kurian Babu, and Purabi Mahato. 2016. Paral-

lel prefix adders — A comparative study for fastest response. In 2016 International
Conference on Communication and Electronics Systems (ICCES). 1–6.

[19] Luís MS Russo. 2010. Multiplication algorithms for Monge matrices. In Inter-
national Symposium on String Processing and Information Retrieval. Springer,
94–105.

[20] Yoshifumi Sakai. 2011. A fast algorithm for multiplying min-sum permutations.

Discrete Applied Mathematics 159 (2011), 2175–2183.
[21] J P Schmidt. 1998. All Highest Scoring Paths in Weighted Grid Graphs and Their

Application to Finding All Approximate Repeats in Strings. SIAM J. Comput. 27,
4 (1998), 972–992.

[22] Peter H. Sellers. 1980. The theory and computation of evolutionary distances:

Pattern recognition. Journal of Algorithms 1 (1980), 359–373.
[23] Alexander Tiskin. 2008. Semi-local string comparison: Algorithmic techniques

and applications. Mathematics in Computer Science 1, 4 (2008), 571–603.
[24] Alexander Tiskin. 2015. Fast Distance Multiplication of Unit-Monge Matrices.

Algorithmica 71 (2015), 859–888.
[25] Alexander Tiskin. 2020. Communication vs Synchronisation in Parallel String

Comparison. In Proceedings of the 32nd ACM Symposium on Parallelism in Algo-
rithms and Architectures. 479–489.

[26] Leslie G Valiant. 1990. A bridging model for parallel computation. Commun.
ACM 33, 8 (1990), 103–111.

[27] Robert A. Wagner and Michael J. Fischer. 1974. The String-to-String Correction

Problem. J. ACM 21, 1 (1974), 168–173.

	Abstract
	1 Introduction
	2 Related work
	3 Semi-local LCS
	3.1 Iterative combing algorithm
	3.2 Recursive combing

	4 Parallel algorithms
	4.1 Parallel iterative combing
	4.2 Parallel recursive combing
	4.3 Parallel hybrid combing
	4.4 Bit-parallel iterative combing

	5 Evaluation
	5.1 Braid Multiplication
	5.2 Semi-local LCS algorithms

	6 Conclusion
	References

