
Working Notes: Compiling ULC to Lower-level
Code by Game Semantics and Partial Evaluation

Daniil Berezun1 and Neil D. Jones2

1 JetBrains and St. Petersburg State University (Russia)
2 DIKU, University of Copenhagen (Denmark)

Abstract. What: Any expression M in ULC (the untyped λ-calculus)
can be compiled into a rather low-level language we call LLL, whose pro-
grams contain none of the traditional implementation devices for func-
tional languages: environments, thunks, closures, etc. A compiled pro-
gram is first-order functional and has a fixed set of working variables,
whose number is independent of M . The generated LLL code in effect
traverses the subexpressions of M .

How: We apply the techniques of game semantics to the untyped λ-
calculus, but take a more operational viewpoint that uses much less
mathematical machinery than traditional presentations of game seman-
tics. Further, the untyped lambda calculus ULC is compiled into LLL by
partially evaluating a traversal algorithm for ULC.

1 Context and contribution

Plotkin posed the problem of existence of a fully abstract semantics of PCF [17].
Game semantics provided the first solution [1–3, 9]. Subsequent papers devise
fully abstract game semantics for a wide and interesting spectrum of program-
ming languages, and further develop the field in several directions.

A surprising consequence: it is possible to build a lambda calculus interpreter
with none of the traditional implementation machinery: β-reduction; environ-
ments binding variables to values; and “closures” and “thunks” for function calls
and parameters. This new viewpoint on game semantics looks promising to see
its operational consequences. Further, it may give a new line of attack on an old
topic: semantics-directed compiler generation [10, 18].

Basis: Our starting point was Ong’s approach to normalisation of the simply
typed λ-calculus(henceforth called STLC). Paper [16] adapts the game semantics
framework to yield an STLC normalisation procedure (STNP for short) and its
correctness proof using the traversal concept from [14,15].

STNP can be seen as in interpreter; it evaluates a given λ-expression M by
managing a list of subexpressions of M , some with a single back pointer. These
notes extend the normalisation-by-traversals approach to the untyped λ-calculus,
giving a new algorithm called UNP, for Untyped Normalisation Procedure. UNP
correctly evaluates any STLC expression sans types, so it properly extends STNP
since ULC is Turing-complete while STLC is not.



12 Daniil Berezun and Neil D. Jones

Plan: in these notes we start by describing a weak normalisation procedure.
A traversal-based algorithm is developed in a systematic, semantics-directed way.
Next step: extend this to full normalisation and its correctness proof (details
omitted from these notes). Finally, we explain briefly how partial evaluation can
be used to implement ULC, compiling it to a low-level language.

2 Normalisation by traversal: an example

Perhaps surprisingly, the normal form of an STLC λ-expression M may be found
by simply taking a walk over the subexpressions of M . As seen in [14–16] there
is no need for β-reduction, nor for traditional implementation techniques such
as environments, thunks, closures, etc. The “walk” is a traversal: a sequential
visit to subexpressions of M . (Some may be visited more than once, and some
not at all.)

A classical example; multiplication of Church numerals3

mul = λm.λn.λs.λz.m(ns)z

A difference between reduction strategies: consider computing 3∗2 by evaluating
mul 3 2. Weak normalisation reduces mul 3 2 only to λs.λz.3(2s)z but does no
computation under the lambda. On the other hand strong normalisation reduces
it further to λs.λz.s6z.

A variant is to use free variables S,Z instead of the bound variables s, z, and
to use mul′ = λm.λn.m(nS)Z instead of mul. Weak normalisation computes all
the way: mul′ 3 2 weakly reduces to S6Z as desired. More generally, the Church-
Turing thesis holds: a function f : Nn ⇀ N is partial recursive (computable) iff
there is a λ-expression M such that for any x1, . . . , xn, x ∈ N

f(x1, . . . , xn) = x ⇔ M(Sx1Z) . . . (SxnZ) weakly reduces to SxZ

The unique traversal of 3 (2S)Z visits subexpressions of Church numeral 3
once. However it visits 2 twice, since in general x ∗ y is computed by adding y
together x times. The weak normal form of 3 (2S)Z is S6Z: the core of Church
numeral 6.

Figure 1 shows traversal of expression 2 (2S)Z in tree form4. The labels 1:,
2: etc. are not part of the λ-expression; rather, they indicate the order in which
subexpressions are traversed.

3 The Church numeral of natural number x is x = λs.λz.sxz. Here sx =
s(s(. . . s(z) . . .)) with x occurrences of s, where s represents “successor” and z
represents “zero”.

4 Application operators @i have been made exlicit, and indexed for ease of reference.
The two 2 subtrees are the “data’; their bound variables have been named apart to
avoid confusion. The figure’s “program” is the top part ( S)Z.



Working Notes: Compiling ULC to Lower-level Code by Game Semantics 13

Computation by traversal can be seen as a game

The traversal in Figure 1 is a game play between program λmλn.(m@ (n@S))@Z
and the two data values (m,n each have λ-expression 2 as value).

Informally: two program nodes are visited in steps 1, 2; then data 1’s leftmost
branch is traversed from node λs1 until variable s1 is encountered at step 6.
Steps 7-12: data 2’s leftmost branch is traversed from node λs2 down to variable
s2, after which the program node S is visited (intuitively, the first output is
produced). Steps 13-15: the data 2 nodes @6 and s2 are visited, and the program:
it produces the second output S. Steps 16, 17: z2 is visited, control is finished
(for now) in data 2, and control resumes in data 1.

Moving faster now: @4 and the second s1 are visited; data 2 is scanned for a
second time; and the next two output S’s are produced. Control finally returns
to z1. After this, in step 30 the program produces the final output Z.

DATA 1
⇓︷ ︸︸ ︷
λs13:

?
λz14:

?
@35:

?

�
��+

s16:
@4 : 17

?

�
��+

s118:
z1 : 29



⇐ DATA 2

λs28, 20:

?
λz29, 21:

?
@510, 22:

?

�
��+

s211, 23:
@6 : 13, 25

?

�
��+

s214, 26:
z2 : 16, 28

PROGRAM ⇒



1: @1

�
�
�+

@
@R

Z : 302: @2

��
���

���
����

HHHj
7, 19: @7

�
�	

HHj S : 12, 15, 24, 27

Fig. 1. Syntax tree for mul 2 2S Z = 2(2S)Z. (Labels show traversal order.)



14 Daniil Berezun and Neil D. Jones

Which traversal? As yet this is only an “argument by example”; we have
not yet explained how to choose among all possible walks through the nodes of
2(2S)Z to find the correct normal form.

3 Overview of three normalisation procedures

3.1 The STNP algorithm

The STNP algorithm in [16] is deterministic, defined by syntax-directed inference
rules.

The algorithm is type-oriented even though the rules do not mention types:
it requires as first step the conversion from STLC to η-long form. Further, the
statement of correctness involves types in “term-in-context” judgements Γ `
M : A where A is a type and Γ is a type environment.

The correctness proof involves types quite significantly, to construct program-
dependent arenas, and as well a category whose objects are arenas and whose
morphisms are innocent strategies over arenas.

3.2 Call-by-name weak normalisation

We develop a completely type-free normalisation procedure for ULC.5 Semantics-
based stepping stones: we start with an environment-based semantics that resem-
bles traditional implementations of CBN (call-by-name) functional languages.
The approach differs from and is simpler than [13].

The second step is to enrich this by adding a “history” argument to the
evaluation function. This records the “traversal until now”. The third step is
to simplify the environment, replacing recursively-defined bindings by bindings
from variables to positions in the history. The final step is to remove the envi-
ronments altogether.

The result is a closure- and environment-free traversal-based semantics for
weak normalisation.

3.3 The UNP algorithm

UNP yields full normal forms by “reduction under the lambda” using head linear
reduction [7, 8]. The full UNP algorithm [4] currently exists in two forms:

– An implementation in haskell; and

– A set of term rewriting rules. A formal correctness proof of UNP is nearing
completion, using the theorem prover COQ [4].

5 Remark: evaluator nontermination is allowed on an expression with no weak normal
form.



Working Notes: Compiling ULC to Lower-level Code by Game Semantics 15

4 Weak CBN evaluation by traversals

We begin with a traditional environment-based call-by-name semantics: a reduc-
tion-free common basis for implementing a functional language. We then elimi-
nate the environments by three transformation steps. The net effect is to replace
the environments by traversals.

4.1 Weak evaluation using environments

The object of concern is a pair e : ρ, where e is a λ-expression and ρ is an
environment6 that binds some of e’s free variables to pairs e′:ρ′.

Evaluation judgements, metavariables and domains:

e:ρ ⇓ v Expression e in environment ρ evaluates to value v
v, e:ρ ⇓ v′ Value v applied to argument e in environment ρ gives value v′

ρ ∈ Env = V ar ⇀ Exp× Env
v ∈ V alue = {e : ρ | e does not have form (λx.e0)e1}

Note: the environment domain Env is defined recursively.

Determinism The main goal, given a λ-expression M , is to find a value v such
that M:[] ⇓ v (if it exists). The following rules may be thought of as an algorithm
to evaluate M since they are are deterministic. Determinism follows since the
rules are single-threaded: consider a goal left ⇓ right . If left has been computed
but right is still unknown, then at most one inference rule can be applied, so the
final result value is uniquely defined (if it exists).

(Lam)
λx.e:ρ ⇓ λx.e:ρ (Freevar) x free in M

x:ρ ⇓ x:[]
(Boundvar)

ρ(x) ⇓ v
x:ρ ⇓ v

Abstractions and free variables evaluate to themselves. A bound variable x is ac-
cessed using call-by-name: the environment contains an unevaluated expression,
which is evaluated when variable x is referenced.

(AP)
e1:ρ ⇓ v1 v1, e2:ρ ⇓ v

e1@e2:ρ ⇓ v

Rule (AP) first evaluates the operator e1 in an application e1@e2. The value v1
of operator e1 determines whether rule (APλ) or (APλ) is applied next.

(APλ)
e′ = λx.e′′ ρ′′ = ρ′[x 7→ e2:ρ] e′′:ρ′′ ⇓ v

e′:ρ′, e2:ρ ⇓ v

6 Call-by-name semantics: If ρ contains a binding x 7→ e′ :ρ′, then e′ is an as-yet-
unevaluated expression and ρ′ is the environment that was current at the time when
x was bound to e′.



16 Daniil Berezun and Neil D. Jones

In rule (APλ) if the operator value is an abstraction λx.e′′:ρ′ then ρ′ is extended
by binding x to the as-yet-unevaluated operand e2 (paired with its current en-
vironment ρ). The body e′′ is then evaluated in the extended ρ′ environment.

(APλ)
e′ 6= λx.e′′ e2:ρ ⇓ e′2:ρ′2 fv(e′) ∩ dom(ρ′2) = ∅

e′:ρ′, e2:ρ ⇓ (e′@e′2):ρ′2

In rule (APλ) the operator value e′ :ρ′ is a non-abstraction. The operand e2 is
evaluated. The resulting value is an application of operator value e′ to operand
value (as long as no free variables are captured).

Rule (APλ) yields a value containing an application. For the multiplication
example, Rule (APλ) yields all of the S applications in result S@(S@(S@(S@Z))).

4.2 Environment semantics with traversal history h

Determinism implies that there exists at most one sequence of visited subex-
pressions for any e:ρ. We now extend the previous semantics to accumulate the
history of the evaluation steps used to evaluate e:ρ.

These rules accumulate a list h = [e1:ρ1, . . . , , . . . , en:ρn] of all subexpressions
of λ-expression M that have been visited, together with their environments. Call
such a partially completed traversal a history. A notation:

[e1:ρ1, . . . , en:ρn] • e:ρ = [e1:ρ1, . . . , en:ρn, e:ρ]

Metavariables, domains and evaluation judgements.

e:ρ, h ⇓ v Expression e in environment ρ evaluates to value v
v, e:ρ, h ⇓ v′ Value v applied to expression e in environment ρ gives value v′

ρ ∈ Env = V ar ⇀ Exp× Env
v ∈ V alue = {e : ρ, h | h ∈ History, e 6= (λx.e0)e1}
h ∈ History = (Exp× Env)∗

Judgements now have the form e : ρ, h ⇓ e′ : ρ′, h′ where h is the history
before evaluating e, and h′ is the history after evaluating e. Correspondingly, we
redefine a value to be of form v = e:ρ, h where e is not a β-redex.

(Lam)
λx.e:ρ, h ⇓ λx.e:ρ, h•(λx.e:ρ)

(Freevar) x free in M
x:ρ, h ⇓ x:[], h•(x:[])

(Boundvar)
ρ(x), h•(x:ρ) ⇓ v

x:ρ, h ⇓ v

(AP)
e1:ρ, h•(e1@e2, ρ) ⇓ v1 v1, e2:ρ ⇓ v

e1@e2:ρ, h ⇓ v



Working Notes: Compiling ULC to Lower-level Code by Game Semantics 17

(APλ)
e′ = λx.e′′ ρ′′ = ρ′[x 7→ e2:ρ] e′′:ρ′′, h′ ⇓ v

e′:ρ′, h′, e2:ρ ⇓ v

(APλ)
e′ 6= λx.e′′ e2:ρ, h

′ ⇓ e′2:ρ′2, h′2 fv(e′) ∩ dom(ρ′2) = ∅
e′:ρ′, h′, e2:ρ ⇓ (e′@e′2):ρ′2, h

′
2

Histories are accumulative It is easy to verify that h is a prefix of h′ whenever
e:ρ, h ⇓ e′,:ρ′, h′.

4.3 Making environments nonrecursive

The presence of the history makes it possible to bind a variable x not to a pair e:ρ,
but instead to the position of a prefix of history h. Thus ρ ∈ Env = V ar → N.
Domains and evaluation judgement:

e:ρ, h ⇓ v Expression e in environment ρ evaluates to value v
v, e:ρ, h ⇓ v′ Value v applied to argument e in environment ρ gives value v′

ρ ∈ Env = V ar ⇀ N
h ∈ History = (Exp× Env)∗

A major difference: environments are now “flat” (nonrecursive) since Env is no
longer defined recursively. Nonetheless, environment access is still possible, since
at all times the current history includes all previously traversed expressions.

Only small changes are needed, to rules (APλ) and (Boundvar); the remaining
are identical to the previous version and so not repeated.

(APλ)
e′ = λx.e′′ ρ′′ = ρ′[x 7→ |h|] e′′:ρ′′, h′ ⇓ v

e′:ρ′, h′, e1@e2:ρ, h ⇓ v

(Boundvar)
nth ρ(x) h = e1@e2:ρ

′ e2:ρ
′ ⇓ v

x:ρ, h ⇓ v

In rule (APλ), variable x is bound to length |h| of the history h that was current
for (e1@e2, ρ). As a consequence bound variable access had to be changed to
match. The indexing function nth : N → History → Exp × Env is defined by:
nth i [e1:ρ1, . . . , en:ρn] = ei:ρi.

4.4 Weak UNP: back pointers and no environments

This version is a semantics completely free of environments: it manipulates only
traversals and back pointers to them. How it works: it replaces an environment
by two back pointers, and finds the value of a variable by looking it up in the
history, following the back pointers.

Details will be appear in a later version of this paper



18 Daniil Berezun and Neil D. Jones

5 The low-level residual language LLL

The semantics of Section 4.4 manipulates first-order values. We abstract these
into a tiny first-order functional language called LLL: essentially a machine lan-
guage with a heap and recursion, equivalent in power and expressiveness to the
language F in book [11].

Program variables have simple types (not in any way depending on M). A
token, or a product type, has a static structure, fixed for any one LLL program.
A list type [tau] denotes dynamically constructed values, with constructors
[] and :. Deconstruction is done by case. Types are as follows, where Token
denotes an atomic symbol (from a fixed alphabet).

tau ::= Token | (tau, tau) | [ tau ]

Syntax of LLL

program ::= f1 x = e1 ... fn x = en

e ::= x | f e

| token | case e of token1 -> e1 ... tokenn -> en

| (e,e) | case e of (x,y) -> e

| [] | case e of [] -> e x:y -> e

x, y ::= variables

token ::= an atomic symbol (from a fixed alphabet)

6 Interpreters, compilers, compiler generation

Partial evaluation (see [12]) can be used to specialise a normalisation algorithm
to the expression being normalised. The net effect is to compile an ULC expres-
sion into an LLL equivalent that contains no ULC-syntax; the target programs
are first-order recursive functional program with “cons”. Functions have only a
fixed number of arguments, independent of the input λ-expression M .

6.1 Partial evaluation (= program specialisation)

One goal of this research is to partially evaluate a normaliser with respect to
“static” input M . An effect can be to compile ULC into a lower-level language.

Partial evaluation, briefly A partial evaluator is a program specialiser, called
spec. Its defining property:

∀p ∈ Programs . ∀s, d ∈ Data . [[[[spec]](p, s)]](d) = [[p]](s, d)

The net effect is a staging transformation: [[p]](s, d) is a 1-stage computation; but
[[[[spec]](p, s)]](d) is a 2-stage computation.



Working Notes: Compiling ULC to Lower-level Code by Game Semantics 19

Program speedup is obtained by precomputation. Given a program p and

“static” input value s, spec builds a residual program ps
def
= [[spec]](p, s). When

run on any remaining “dynamic” data d, residual program ps computes what p
would have computed on both data inputs s, d.

The concept is historically well-known in recursive function theory, as the
S-1-1 theorem. In recent years partial evaluation has emerged as the practice of
engineering the S-1-1 theorem on real programs [12]. One application is compil-
ing. Further, self-application of spec can achieve compiler generation (from an
interpreter), and even compiler generator generation (details in [12]).

6.2 Should normalisation be staged?

In the current λ-calculus tradition M is self-contained; there is no dynamic data.
So why would one wish to break normalisation into 2 stages?

Some motivations for staging The specialisation definition looks almost
trivial on a normaliser program NP:

∀M ∈ Λ . [[ [[spec]](NP,M)]]() = [[NP]](M)

An extension: allow M to have separate input data, e.g., the input value 2 as in
the example of Section 2. Assume that NP is extended to allow run-time input
data.7 The specialisation definition becomes:

∀M ∈ Λ, d ∈ Data . [[ [[spec]](NP,M)]](d) = [[NP]](M,d) =β M@d

Is staged normalisation a good idea? Let NPM = [[spec]](NP,M) be the spe-
cialiser output.

1. One motivation is that NPM can be in a much simpler language than the
λ-calculus. Our candidate: the “low-level language” LLL of Section 5.

2. A well-known fact: the traversal of M may be much larger than M . By
Statman’s results [19] it may be larger by a “non-elementary” amount (!).

Nonetheless it is possible to construct a λ-free residual program NPM with
|NPM | = O(|M |), i.e., such that M ’s LLL equivalent has size that is only
linearly larger than M itself. More on this in Section 6.3.

3. A next step: consider computational complexity of normalising M , if it is ap-
plied to an external input d. For example the Church numeral multiplication
algorithm runs in time of the order of the product of the sizes of its two
inputs.

4. Further, two stages are natural for semantics-directed compiler generation.

7 Semantics: simply apply M to Church numeral d before normalisation begins.



20 Daniil Berezun and Neil D. Jones

How to do staging Ideally the partial evaluator can do, at specialisation time,
all of the NP operations that depend only on M . As a consequence, NPM will
have no operations at all to decompose or build lambda expressions while it runs
on data d. The “residual code” in NPM will contain only operations to extend
the current traversal, and operations to test token values and to follow the back
pointers.

Subexpressions of M may appear in the low-level code, but are only used
as indivisible tokens. They are only used for equality comparisons with other
tokens, and so could be replaced by numeric codes – tags to be set and tested.

6.3 How to specialise NP with respect to M ?

The first step is to annotate parts of (the program for) NP as either static
or dynamic. Computations in NP will be either unfolded (i.e., done at partial
evaluation time) or residualised: Runtime code is generated to do computation
in the output program NPmul (this is ps as seen in the definition of a specialiser).

Static: Variables ranging over syntactic objects are annotated as static. Ex-
amples include the λ-expressions that are subexpressions of M . Since there are
only finitely many of these for any fixed input M , it is safe to classify such
syntactic data as static.

Dynamic: Back pointers are dynamic; so the traversal being built must
be dynamic too. One must classify data relevant to traversals or histories as
dynamic, since there are unboundedly many.8

For specialisation, all function calls of the traversal algorithm to itself that do
not progress from one M subexpression to a proper subexpression are annotated
as “dynamic”. The motivation is increased efficiency: no such recursive calls
in the traversal-builder will be unfolded while producing the generator; but all
other calls will be unfolded.

About the size of the compiled λ-expression (as discussed in Section 6.2).

We assume that NP is semi-compositional: static arguments ei in a function
call f(e1, . . . , en) must either be absolutely bounded, or be substructures of M
(and thus λ-expressions).

The size of NPM will be linear in |M | if for any NP function f(x1, . . . , xn),
each static argument is either completely bounded or of BSV; and there is at
most one BSV argument, and it is always a subexpression of M .

8 In some cases more can be made static: “the trick” can be used to make static copies
of dynamic values that are of BSV, i.e., of bounded static variation, see discussion
in [12].



Working Notes: Compiling ULC to Lower-level Code by Game Semantics 21

6.4 Transforming a normaliser into a compiler

Partial evaluation can transform the ULC (or STNP) normalisation algorithm
NP into a program to compute a semantics-preserving function

f : ULC→ LLL (or f : STLC→ LLL)

This follows from the second Futamura projection. In diagram notation of [12]:

If NP ∈
L

ULC

then [[spec]](spec,NP) ∈
ULC LLL

L

-

.

Here L is the language in which the partial evaluator and normaliser are written,
and LLL of Section 5 is a sublanguage large enough to contain all of the dynamic
operations performed by NP.

Extending this line of thought, one can anticipate its use for a semantics-directed
compiler generator, an aim expressed in [10]. The idea would be to use LLL as
a general-purpose intermediate language to express semantics.

6.5 Loops from out of nowhere

Consider again the Church numeral multiplication (as in Figure 1), but with a
difference: suppose the data input values for m,n are given separately, at the
time when program NPmul is run.. Expectations:

– Neither mul nor the data contain any loops or recursion. However mul will
be compiled into an LLL -program NPmul with two nested loops.

– Applied to two Church numerals m,n, NP mul computes their product by
doing one pass over the Church numeral for m, interleaved with m passes
over the Church numeral for n. (One might expect this intuitively).

– These appear as an artifact of the specialisation process. The reason the
loops appear: While constructing NPmul (i.e., during specialisation of NP to
its static input mul), the specialiser will encounter the same static values
(subexpressions of M) more than once.

7 Current status of the research

Work on the simply-typed λ-calculus

We implemented a version of STNP in haskell and another in scheme. We plan
to use the unmix partial evaluator (Sergei Romanenko) to do automatic partial
evaluation and compiler generation. The haskell version is more complete,
including: typing; conversion to eta-long form; the traversal algorithm itself; and
construction of the normalised term.



22 Daniil Berezun and Neil D. Jones

We have handwritten STNP-gen in scheme. This is the generating extension
of STNP. Effect: compile from UNC into LLL, so NPM = [[STNP-gen]](M).
Program STNP-gen is essentially the compiler generated from STNP that could
be obtained as in Section 6.4 Currently STNP-gen yields output NPM as a
scheme program, one that would be easy to convert into LLL as in Section 5.

Work on the untyped λ-calculus

UNP is a normaliser for UNC. A single traversal item may have two back point-
ers (in comparison: STNP uses one). UNP is defined semi-compositionally by
recursion on syntax of ULC-expression M . UNP has been written in haskell
and works on a variety of examples. A more abstract definition of UNP is on the
way, extending Section 4.4.

By specialising UNP, an arbitrary untyped ULC-expression can be translated
to LLL . A correctness proof of UNP is pending. No scheme version or generating
extension has yet been done, though this looks worthwhile for experiments using
unmix.

Next steps

More needs to be done towards separating programs from data in ULC (Section
6.5 was just a sketch). A current line is to express such program-data games
in a communicating version of LLL . Traditional methods for compiling remote
function calls are probably relevant.

It seems worthwhile to investigate computational complexity (e.g., of the λ-
calculus); and as well, the data-flow analysis of output programs (e.g., for pro-
gram optimisation in time and space).

Another direction is to study the utility of LLL as an intermediate language
for a semantics-directed compiler generator.

References

1. S. Abramsky and G. McCusker. Game semantics. In Computational Logic: Pro-
ceedings of the 1997 Marktoberdorf Summer School, pages 1–56. Springer Verlag,
1999.

2. Samson Abramsky, Pasquale Malacaria, and Radha Jagadeesan. Full abstraction
for PCF. In Theoretical Aspects of Computer Software, International Conference
TACS ’94, Sendai, Japan, April 19-22, 1994, Proceedings, pages 1–15, 1994.

3. Samson Abramsky and C.-H. Luke Ong. Full abstraction in the lazy lambda
calculus. Inf. Comput., 105(2):159–267, 1993.

4. Daniil Berezun. UNP: normalisation of the untyped λ-expression by linear head
reduction. ongoing work, 2016.

5. William Blum and C.-H. Luke Ong. The safe lambda calculus. Logic Methods in
Computer Science, 5(1), 2009.

6. William Blum and Luke Ong. A concrete presentation of game semantics. In Galop
2008:Games for Logic and Programming Languages, 2008.



Working Notes: Compiling ULC to Lower-level Code by Game Semantics 23

7. Vincent Danos and Laurent Regnier. Local and asynchronous beta-reduction (an
analysis of girard’s execution formula). In Proceedings of the Eighth Annual Sym-
posium on Logic in Computer Science (LICS ’93), Montreal, Canada, June 19-23,
1993, pages 296–306, 1993.

8. Vincent Danos and Laurent Regnier. Head linear reduction. unpublished, 2004.
9. J. M. E. Hyland and C.-H. Luke Ong. On full abstraction for PCF: I, II, and III.

Inf. Comput., 163(2):285–408, 2000.
10. Neil D. Jones, editor. Semantics-Directed Compiler Generation, Proceedings of a

Workshop, Aarhus, Denmark, January 14-18, 1980, volume 94 of Lecture Notes in
Computer Science. Springer, 1980.

11. Neil D. Jones. Computability and complexity - from a programming perspective.
Foundations of computing series. MIT Press, 1997.

12. Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. Partial evaluation and auto-
matic program generation. Prentice Hall international series in computer science.
Prentice Hall, 1993.

13. Andrew D. Ker, Hanno Nickau, and C.-H. Luke Ong. Innocent game models of
untyped lambda-calculus. Theor. Comput. Sci., 272(1-2):247–292, 2002.

14. Robin P. Neatherway, Steven J. Ramsay, and C.-H. Luke Ong. A traversal-based
algorithm for higher-order model checking. In ACM SIGPLAN International Con-
ference on Functional Programming, ICFP’12, Copenhagen, Denmark, September
9-15, 2012, pages 353–364, 2012.

15. C.-H. Luke Ong. On model-checking trees generated by higher-order recursion
schemes. In 21th IEEE Symposium on Logic in Computer Science (LICS 2006),
12-15 August 2006, Seattle, WA, USA, Proceedings, pages 81–90, 2006.

16. C.-H. Luke Ong. Normalisation by traversals. CoRR, abs/1511.02629, 2015.
17. Gordon D. Plotkin. LCF considered as a programming language. Theor. Comput.

Sci., 5(3):223–255, 1977.
18. David A. Schmidt. State transition machines for lambda calculus expressions. In

Jones [10], pages 415–440.
19. Richard Statman. The typed lambda-calculus is not elementary recursive. In

18th Annual Symposium on Foundations of Computer Science, Providence, Rhode
Island, USA, pages 90–94, 1977.


	Context and contribution
	Normalisation by traversal: an example
	Overview of three normalisation procedures
	The STNP algorithm
	Call-by-name weak normalisation
	The UNP algorithm

	Weak CBN evaluation by traversals
	Weak evaluation using environments
	Environment semantics with traversal history h
	Making environments nonrecursive
	Weak UNP: back pointers and no environments

	The low-level residual language LLL
	Interpreters, compilers, compiler generation
	Partial evaluation (= program specialisation)
	Should normalisation be staged?
	How to specialise NP with respect to M ?
	Transforming a normaliser into a compiler 
	Loops from out of nowhere

	Current status of the research

