
On a Direction-Driven Functional Conversion
Ekaterina Verbitskaia

kajigor@gmail.com
JetBrains Research
Belgrade, Serbia

Daniil Berezun
daniil.berezun@jetbrains.com

JetBrains Research
Amsterdam, Netherlands

Dmitry Boulytchev
dboulytchev@math.spbu.ru

SPbSU
Saint Petersburg, Russia

Abstract
Relational programming is known for its capability to pro-
vide a short and concise executable specifications for a wide
range of interesting problems. Specifically, the nature of re-
lational programming makes it possible to consider a single
specification as a whole family of concrete programs. In-
dividual programs of this family can be taken and run by
placing free variables inside a top-level goal arguments. In
particular, relational programming provides a very generic
way to implement program inversion, which opens a way
for program synthesis via converting verifiers into solvers.
However, acquired in such a way solvers often come with an
overhead, originating from the very nature of relational com-
putations with substitutions, unifications, interleaving, etc.
In this paper we study a conversion of relational programs
into functional form taking into account a concrete direction
of evaluation. The project is at an early stage, but the results
so far are promising: converted functions run much faster
than the original relations.

Keywords: relational programming, functional programming,
conversion
ACM Reference Format:
Ekaterina Verbitskaia, Daniil Berezun, and Dmitry Boulytchev. 2018.
On a Direction-Driven Functional Conversion. In Proceedings of
Make sure to enter the correct conference title from your rights confir-
mation emai (Conference acronym ’XX). ACM, New York, NY, USA,
10 pages. https://doi.org/XXXXXXX.XXXXXXX

1 Introduction
It is well-known that some programs are easier to imple-
ment as inversions of other, simpler programs [2]. One of
the notable cases is verifiers vs. solvers [7]: it is rather easy
to implement a verification procedure which tests if a given
candidate is indeed a solution of a certain problem, and the
inversion of this procedure delivers a solver. There are a few

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

aproaches to program inversion, for example, universal re-
solving algorithm [3] and logic and relational programming.
In latter case, inversion comes with a lot of overhead which
may be eliminated.

One source of overhead in relational programming comes
from unification — the basic operation which is at the core
of miniKanren. Unification involves traversing terms being
unified along with a list of substitutions and doing occurs-
check all of which may be redundant when there is a specific
execution direction in mind. Directions fix at compile-time
which arguments of a relation are always going to be known
and ground at runtime. Having this information, it is possible
to specialize a relation for the direction [11] and get rid of
some of the overhead. In this case, unifications may prove
to be redundant and be replaced with much simpler pattern-
matching and equality checks.
In this paper we study a conversion of miniKanren pro-

grams into a host functional programming language in a
sequence of examples. Examples start from the simplest
conversions and evolve to introduce different features of
miniKanren which influence conversion. Currently the con-
version is not automated: everything is done manually. We
believe the conversion can be semi-automated, leaving some
decisions up to a programmer. Although this project is at
the early state, the evaluation demonstrates its usefulness
by significantly speeding up such programs as computing a
topological sorting of a graph and generating logic formulas
which evaluate to a given value.

2 Preliminaries
In this section we remind the reader some basics of miniKan-
ren. Usually, miniKanren is implemented as an embedded
language and consists of a small set of basic combinators: dis-
junction and conjunction of goals, unification of terms and a
helper to introduce fresh variables. Relations can be defined
and called in the same manner as functions of the host lan-
guage. Each miniKanren goal maps a variable substitution
into a stream of substitutions. Computation may fail, produc-
ing an empty stream, or succeed and produce a non-empty
stream of substitutions. In order to assure completeness of
search, miniKanren usually implements conjunctions as
monadic bind on streams and disjunctions as mplus which
interleaves streams [6].
We use the following syntactic conventions. We denote

conjunctions as a right-associative binary relation ∧ . In place
of disjunctions we use conde with a list of miniKanren

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Ekaterina Verbitskaia, Daniil Berezun, and Dmitry Boulytchev

goals which is just a syntactic sugar. Unifications between
two terms are denoted by a not associative binary relation
≡. Several fresh variables may be introduced to the scope
by a construction fresh . We use superscript 𝑜 to differenti-
ate miniKanren relations from functions written in a host
language.

Consider an addition relation add𝑜 x y z which specifies
that z equals to x + y (Listing 1). This relation has three
arguments: x, y and z, and is comprised of a single conde
with two branches. The first conde branch is a conjunction
of two unifications: xwith a term O and ywith z. The second
conde branch introduces fresh variables x ' and z ' and fol-
lows with a conjunction of two unifications and a recursive
relation call.
One can run a relation in some direction by passing it

input arguments. For example, executing add𝑜 (S O) O z
finds the sum of the first two arguments and maps z to
their sum S O. We can also provide only the last argument:
add𝑜 x y (S O) , which can be considered as an inversion of
addition. This computes all pairs of Peano numbers (x , y)
which sum up to the given value z = S O, namely (O , S O)
and (S O , O) . Moreover, we can pass as input arguments not
only ground terms but terms which contain fresh variables,
such as add𝑜 x (S y) z. Executing this relation finds all
triples (x , y , z) such that x + (y + 1) = z. Running in
some directions can fail. For example add𝑜 (S x) y O may
never succeed, since (1 + x) + y can never be equal to O.
There exists a multitude of different directions for each

relation. In this paper we only consider directions in which
input arguments are ground, i.e. do not contain any fresh
variables, we will call them principal directions. We denote
a principal direction by the name of a relation followed by
a specification of its arguments: in place of each argument
we write either in when the argument is input or out if it is
output. There are 8 principal directions for add𝑜 x y z:
• three directions with one input: add𝑜 in out out,
add𝑜 out in out, and add𝑜 out out in;
• three directions with two inputs: add𝑜 in in out,
add𝑜 in out in, add𝑜 out in in;
• one direction which does not have any input argu-
ments: add𝑜 out out out;
• and one direction in which all arguments are input:
add𝑜 in in in.

When all arguments of a relation are input arguments,
it serves as a predicate, while passing no arguments corre-
sponds to the generation of all valid values for all arguments
of a relation.

3 Conversion by Examples
In this section we gradually introduce our conversion by
means of a set of examples. Each direction we consider il-
lustrates some aspect of the conversion. For brevity, we will
use Haskell as a target language in this paper. In practice,

let rec add𝑜 x y z = conde [
(x ≡ O ∧ y ≡ z) ;
(fresh (x ' z ')
(x ≡ S x ' ∧
z ≡ S z ' ∧
add𝑜 x ' y z '))]

Listing 1. Addition relation

addXY : : Nat → Nat → Nat
addXY x y =

case x of
O → y
S x ' → S (addXY x ' y)

Listing 2. Function for addo in in out direction

addXY : : Nat → Nat → Stream Nat
addXY x y =

case x of
O → return y
S x ' → S <$> addXY x ' y

Listing 3. Using streams in a function for addo in in out
direction

any programming language in which miniKanren is imple-
mented may be used as a target language.

3.1 Basic Conversion
Consider add𝑜 in in out. This direction can be expressed
as a function presented in Listing 2. The relation add𝑜 x y z
has two branches in a conde: one unifies x with O and the
other with S x ' . Since we know that x is always ground in
this direction, we can replace unifications with a pattern-
matching.

When x unifies with O, the rest of the conde branch is the
unification y ≡ z. This unification means that the output
value of the direction is equal to y. Thus we can just return
y as the result when x is pattern-matched with O.
Now consider the conde branch in which x unifies with

S x ' where x ' is a fresh variable. The variable x in this
direction is always ground, thus x ' is also ground after uni-
fication. This means, that the recursive call add𝑜 x ' y z ' is
done in the direction add𝑜 in in out and can be converted
into a recursive call to the function addXY. This recursive
call computes the value of z ' , making it ground. The only
thing that is left is to apply the constructor S to the result of
the recursive call, since z ≡ S z ' .

On a Direction-Driven Functional Conversion Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

addZ : : Nat → Stream (Nat , Nat)
addZ z =
return (O , z) `mplus`
case z of
O → Empty
S z ' → do

(x ' , y) ← addZ z '
return (S x ' , y)

Listing 4. Function for addo out out in direction

3.2 Nondeterministic Directions
Running a relation in a given direction may succeed with one
or more possible answers or it may fail, i.e. it may run non-
deterministically. It is natural to implement nondeterminism
by using streams which are at the core of miniKanren. Any
deterministic directions can be trivially transformed to using
streams as shown in Listing 3. One example in which there
are multiple answers is add𝑜 out out in. This direction cor-
responds to finding all pairs of numbers which sum up to
the given z and can be implemented as shown in Listing 4.

In this case, the input variable z does not discriminate two
branches of conde. Although the second branch of conde
unifies z with a term S z ' , the first branch unifies z with
a free variable y. In this case we need to consider the two
branches independently and then combine the results into a
new stream.

The first conde branch produces a single answer in which
x is O, and y is equal to z. This single result is then wrapped
into a singleton stream.

The second conde branch succeeds only if z is a successor
of another value, thus when z is O it should fail. We express
this by pattern-matching on z and returning an Empty stream
when z is O. Otherwise z unifies with S z ' , which makes
z ' ground, and the recursive call to the relation is done in
the direction add𝑜 out out in. This recursive call returns a
stream of pairs (x ', y) , and by applying the constuctor S
to x ' , we get the value of x.
The two converted conde branches are then combined

by using `mplus`: the same combinator which is used in
miniKanren for disjunctions. We use do-notation when con-
verting the second branch of conde which is just a syntactic
sugar for the monadic bind operation >>=. Binds implement
conjunctions in miniKanren and it is no surprise they fit
well into the functional implementation.

3.3 Free Variables in Answers
In some directions, there are infinitely many answers, such
as in add𝑜 in out out. When only the second argument is
known, the answer is all pairs of numbers (y , z) which sat-
isfy x + y = z. In miniKanren, this is expressed with help
of free variables. Say x is S O, then the stream of answers is
represented as (_ .0, S _ .0) . This means that whatever the

addX : : Nat → Stream (Nat , Nat)
addX x =

case x of
O → do

z ← genNat
return (z , z)

S x ' → do
(y , z ') ← addX x '
return (y , S z ')

genNat : : Stream Nat
genNat = Mature O (S <$> genNat)

Listing 5. Function for addo in out out direction

addXYZ : : Nat → Nat → Nat → Stream ()
addXYZ x y z =

case x of
O | y == z → return ()

| otherwise → Empty
S x ' →

case z of
O → Empty
S z ' → addXYZ x ' y z '

Listing 6. Function for addo in in in direction

value of y is, z is just its successor. In our paper we only con-
sider scenarios when the answers are ground, so the expected
stream of answers is (O , S O), (S O , S (S O)), To
do it, we need to systematically generate a stream of ground
values for y and z. Currently, we leave the generation up to
the user, but generators may be automatically created from
their types.

Listing 5 shows the functional implementation of the direc-
tion add𝑜 in out out. This direction is very similar to the
add𝑜 in in out: we can pattern match on x, call the same
function recursively in the second conde branch and con-
struct the resulting value for z by applying the constructor
S. But in the case when x is O, the only thing we know about
the values of y and z is that they are equal. In this case can
generate a stream of all Peano numbers for z (or y) and use
them in the returned result.
The generation of all numbers is done as shown in List-

ing 5, function genNat, where Mature is a stream constructor.
The only thing one should be careful about, is to ensure lazy
generation of the values, especially in case of an eager host
language, such as OCaml.

3.4 Predicates
When all arguments of a relation are input, the direction
serves as a predicate. Consider add𝑜 in in in and its func-
tional implementation in Listing 6. In this case there is no

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Ekaterina Verbitskaia, Daniil Berezun, and Dmitry Boulytchev

let rec mult𝑜 x y z = conde [
(x ≡ O ∧ z ≡ O) ;
(y ≡ O ∧ z ≡ O) ;
(x ≡ S O ∧ z ≡ y) ;
(y ≡ S O ∧ z ≡ x) ;
(fresh (x ' r ')

(x ≡ S x ') ∧ (add y r ' z) ∧ (mult x ' y r ')
)]

Listing 7.Multiplication relation

multXY ' : : Nat → Nat → Stream Nat
multXY ' O y = return O
multXY ' x O = return O
multXY ' (S O) y = return y
multXY ' x (S O) = return x
multXY ' (S x ') y = do

(r ' , r) ← addX y
multXYZ x ' y r '
return r

multXYZ : : Nat → Nat → Nat → Stream ()
multXYZ O y O = return ()
multXYZ x O O = return ()
multXYZ (S O) y z | y == z = return ()
multXYZ x (S O) z | x == z = return ()
multXYZ (S x ') y z = do
z ' ← multXY ' x ' y
addXYZ y z ' z

multXYZ _ _ _ = Empty

Listing 8. Inefficient implementation of multo in in out
direciton

actual answers we should return: the only thing that matters
is whether the computation succeeded or failed. Failure is
expressed with an empty stream and success — as a singleton
stream with a unit value.

All arguments of the relation in this direction are ground.
This means, that all unification can be replaced with either
pattern-matching or simple equality check.When converting
the first conde branchwe patternmatch on x, and then check
if y and z are equal. The second conde branch introduces
another pattern matching, this time on z, which ensures that
z is not O.

Functional implementations of other principal directions
of the add𝑜 x y z relation which did not make into this sec-
tion, can be found in Appendix A.

3.5 Order within Conjunctions
Up until now we only seen examples with only one recursive
call which is done to the same relation. Many programs in
miniKanren use several relations in the same bodies, see for

multXY : : Nat → Nat → Stream Nat
multXY O y = return O
multXY x O = return O
multXY (S O) y = return y
multXY x (S O) = return x
multXY (S x ') y = do

r ' ← multXY x ' y
addXY y r '

Listing 9. Efficient implementation of multo in in out
direciton

example Listing 7. The relation mult𝑜 x y z relates variables
such that x ∗ y = z. The base cases in this relation are
when x or y are O and S O. When x unifies with a successor
of another value, then we can use equalities (x ' + 1) ∗ y
= x ' ∗ y + y. This is done by adding y to the intermediate
result of multiplying x ' by y.

When converting it into a function for the given direction,
we need to make sure to call functional counterparts of add𝑜
and mult𝑜 in the right order which depends on the direction.
Consider the direction mult𝑜 in in out. The conversion of
base cases is done with the same principals as the previous
examples. The last conde branch contains two call to two
different relations: add𝑜 and mult𝑜 . Variables x ' and y in
this direction are ground, which impose possible directions
on the relation calls. There are two ways we can order these
calls.
One of them is to first call add𝑜 in the direction add𝑜 in

out out since y is ground, while r and r ' are to be computed.
After this, all arguments in the call to mult𝑜 are known, and it
can be used as a predicate mult𝑜 in in in. Finally, we return
r if the predicate succeeds: see Listing 8. Unfortunately, this
order proves to bee too slow: it takes about half of a second
to multiply 4 by 4, and more than 300 seconds to multiply 5
by 5. This can be explained by the fact that add𝑜 in out out
generates an infinite streams of answers, only one which
succeeds in multiplication predicate, but considering them
all even to find the first (and only) answer to multXY ' takes
too much time.
Better and more efficient implementation of mult𝑜 in

in out is shown in Listing 9. Here, we first execute the
recursive call of the direction mult𝑜 in in out, and then
use add𝑜 in in out to compute the final result. None of
these relations produce an infinite stream, and the function
runs in a fraction of a second. Note also that in this case
there is no need to generate any additional functions for
directions which are different from the one being converted.
In general, it is not clear how to choose the best order in

which to convert calls within a conjunction. One heuristic is
to favor calls which do not produce infinite streams, namely
do not use generators for free variables.

On a Direction-Driven Functional Conversion Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

topsort graph numbering =
let n = S (numberOfNodes graph) in
go graph numbering n

where
go graph numbering n =

case graph of
[] → True
(b , e) : graph ' →
let nb = lookup numbering b in
let ne = lookup numbering e in
less nb ne &&
less ne n &&
topsort graph ' numbering

Listing 10. Functional intepreter for topologic sort of a
graph

let topsort𝑜 graph numbering r =
let rec topsort𝑜 graph numbering n r = conde [

(graph ≡ [] ∧ r ≡ true) ;
(fresh (b e graph ')
(graph ≡ (b , e) : graph ' ∧
(fresh (x nb ne)
(lookup𝑜 numbering b nb ∧
lookup𝑜 numbering e ne ∧
less𝑜 nb ne x ∧
conde [
(x ≡ false ∧ r ≡ false) ;
(fresh (y)

(x ≡ true ∧
less𝑜 ne n y ∧
conde [
(y ≡ false ∧ r ≡ false) ;
(y ≡ true ∧
topsort𝑜 graph ' numbering n r)

]))]))))] in
(fresh (n n ')
(n ' ≡ s n ∧ numberOfNodes𝑜 graph n
∧ topsort𝑜 graph numbering n ' r))

Listing 11. Relational intepreter for topologic sort of a graph

4 Evaluation
To evaluate our proposed conversion scheme, we manually
rewritten severals problems in different directions and com-
pared their execution times with their relational counter-
parts. Here we showcase two relational programs and their
conversions.

4.1 Topologic sort
This program topologically sorts a directed graph. A graph
is represented as a list of edges, where each edge is a pair
of vertices. The first vertex of a pair is the beginning of the

let topsort𝑜True graph numbering =
let rec topsort𝑜 graph numbering n = conde [

(graph ≡ []) ;
(fresh (b e graph ')
(graph ≡ (b , e) : graph ' ∧
(fresh (x y nb ne)

(lookup𝑜 numbering b nb ∧
lookup𝑜 numbering e ne ∧
less𝑜 nb ne x ∧
x ≡ true ∧
less𝑜 ne n y ∧
y ≡ true ∧
topsort𝑜 graph ' numbering n))))] in

(fresh (n n ')
(n ' ≡ s n ∧ numberOfNodes𝑜 graph n
∧ topsort𝑜True graph numbering n '))

Listing 12. Specialized relational intepreter for topologic sort
of a graph

edge, and the second vertex is the end of the edge. A vertex
is a distinct Peano number in the range [0.. n−1] where n
is the number of edges. The vertices are sorted as a result of
executing the program. The sort is represented as a list of
length n in which the order of vertex i is the i-th element of
the list. We call this list numbering. For example, numbering
[2, 1, 0] means that the zeroth vertex is the second, the
first vertex is the first, and the last vertex is the zeroth in the
ordering.
The relational program is generated from a functional

verifier as proposed in [7]. The functional interpreter takes a
graph and a numbering and checks if the vertices are indeed
topologically sorted as shown in Listing 10. To do it, it checks
all edges of the graph in order, finds the numbers which
correspond to the vertices in the numbering, and ensures
that the beginning comes before the end of the edge, and
that the end of the edge is not greater than the number of
vertices in graph.

This simple predicate along with the other functions it
uses is converted into a relational program shown in List-
ing 11. The relation is then specialized so that it searches for
a correct topologic sort by fixing its last argument to true.
The result of specialization is in Listing 12. Specialization
removes any conde branches which are failing, i.e. unify the
result r with false.
The specialized version is manually converted in a direc-

tion topsort𝑜 in out. This creates a function which con-
structs a numbering which topologically sorts vertices in a
given graph. Most of the conversion follows the principles
outlined in the previous section, but there are several notable
details about this conversion.

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Ekaterina Verbitskaia, Daniil Berezun, and Dmitry Boulytchev

topsortGraph : : Graph → Stream [Nat]
topsortGraph graph = do

n ← numberOfNodesG graph
go graph (n + 1) n (n + 1)

where
go graph n maxInt maxListLength =

case graph of
[] → return []
((b , e) : graph ') → do
(nb , numbering) ←
lookupKey b maxInt maxListLength

ne ← lookupXsKey numbering e
x ← lessXY nb ne
guard x
y ← lessXY ne n
guard y
topsortGraphNumbering graph ' numbering n

Listing 13. Functional implementation for a
topsortoTrue in out direction

lookupKey : : Int → Int → Int
→ Stream (Int , [Int])

lookupKey key maxInt maxListLength =
case key of
0 → fromList [(x , x :xs)

| xs ← genList (genInt maxInt)
(maxListLength − 1) ,

x ← genInt maxInt
]

_ | key > 0 → do
(value , tl) ← lookupKey (key − 1)

maxInt
(maxListLength − 1)

fromList [(value , y : tl)
| y ← genInt maxInt]

_ → Empty
lookupXsKey : : [Int] → Int → Stream Int
lookupXsKey xs key =

case xs of
[] → Empty
(h : tl) → case key of

O → return h
S key ' → lookupXsKey tl key '

Listing 14. Functional implementations for a
lookupo out in out and lookupo in in out directions

First of all, we replaced all Peano numbers with Ints and
all miniKanren boolean values with Bools. This can be done
because of the groundness of variables in this direction.

Second of all, the relational interpreter contains two con-
secutive calls to lookup𝑜 relation, both of which has the

data Term = Lit Bool
| Var Int
| Neg Term
| Conj Term Term
| Disj Term Term

Listing 15. Term data type

same numbering passed to them. When converting them,
the first call is done in the lookup𝑜 out in out direction,
since only the value of its second argument b is known to
be ground. Calling this direction computes the numbering
which is a list with only its b-th element fixed — nb. We gen-
erate values of nbwith a generator, since nb is a free variable.
The same goes for all other elements of the numbering. We
restrict the number of the generated lists by capping their
length with maxListLength and capping maximum value of
an element with maxInt, both of which correspond to the
number of vertices in the input graph.

Having now numbering ground, the second call to lookup𝑜
relation is done in the direction lookup𝑜 in in out. The
second direction is much simpler as it does not involve gen-
eration of any new values for free variables. Conversions of
the both directions are in Listing 14.
Calls to less𝑜 x y r relations are both done in direction

less𝑜 in in out, and their outputs must be true. To express
this check we use guardwhich fails computation (i.e. returns
an Empty stream) if its argument is false.

4.2 Logic Formulas Generation
In this example we convert an evaluator of logic formulas in a
directionwhich generates formulas which evaluate to a given
result. Logic formulas are values of type Term presented in
Listing 15. A formula is either a boolean literal, a variable
indexed by an integer number, a negation of another formula,
a conjunction or disjunction of two formulas.
The relational interpreter is shown in Listing 16. The re-

lation eval𝑜 fm st r computes the value r of a formula fm
with a given variable mapping st. The boolean value v of
a variable Var i is the i-th element of st which can be
retrieved by means of the relation elem𝑜 i st v. The rela-
tion eval𝑜 uses relations and𝑜 , or𝑜 , and not𝑜 for boolean
operations.

Conversion of eval𝑜 relation in the direction eval𝑜 out
out in is presented in Listing 17. As in the previous example,
the relation eval𝑜 is called twice when formula is either a
conjunction or a disjunction. The direction of the second call
is different from the direction of the first call, as first call gen-
erates possible variablemappings. The implementation of the
direction eval𝑜 out in in is shown in Listing 18. The imple-
mentations of the directions and𝑜 in in out, or𝑜 in in out,
not𝑜 in out, and elem𝑜 in in out are in Listing 19.

On a Direction-Driven Functional Conversion Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

eval𝑜 st fm u =
fresh (x y v w z) (conde [

(fm ≡ Conj x y ∧ and𝑜 v w u
∧ eval𝑜 st x v ∧ eval𝑜 st y w) ;

(fm ≡ Disj x y ∧ or𝑜 v w u
∧ eval𝑜 st x v ∧ eval𝑜 st y w) ;

(fm ≡ Neg x ∧ not𝑜 v u ∧ eval𝑜 st x v) ;
(fm ≡ Var z ∧ elem𝑜 z st u) ;
(fm ≡ Lit u)])

and𝑜 x y b = conde [
(x ≡ True ∧ y ≡ True ∧ b ≡ True) ;
(x ≡ False ∧ y ≡ True ∧ b ≡ False) ;
(x ≡ True ∧ y ≡ False ∧ b ≡ False) ;
(x ≡ False ∧ y ≡ False ∧ b ≡ False)]

or𝑜 x y b = conde [
(x ≡ True ∧ y ≡ True ∧ b ≡ True) ;
(x ≡ False ∧ y ≡ True ∧ b ≡ True) ;
(x ≡ True ∧ y ≡ False ∧ b ≡ True) ;
(x ≡ False ∧ y ≡ False ∧ b ≡ False)]

not𝑜 x b = [(x ≡True ∧ b ≡ False) ;
(x ≡ False ∧ b ≡ True)]

elem𝑜 i st v =
fresh (h t i ') conde [

(i ≡ O ∧ st ≡ (v : t)) ;
(i ≡ S i ' ∧ st ≡ (h : t) ∧ elem𝑜 i ' t v)]

Listing 16. Relational evaluator of logic formulas

4.3 Execution Time Comparison
In order to assess the usefulness of the proposed transforma-
tion scheme we compared execution times of miniKanren
relations topsort𝑜 and eval𝑜 with their functional conver-
sions. All functional conversions are done by hand, having a
specific direction in mind. All implementations are written
in OCaml language and can be found in the repository. Note
that throughout this paper we presented all examples written
in Haskell for brevity, but we used OCaml in evaluation to
make the comparison with OCanren more fair. Technically,
to implement our conversions in OCaml, we had to desugar
Haskell do-notation into binds and make some calls return
lazy streams.
For the evaluator of logic formulas, we run both imple-

mentations to search for 10000 formulas which evaluate to
True. The functional implementation restricts the length of
the variable mapping list, thus we also restricted the size
of it in its relational counterpart. We averaged the execu-
tion time over 10 runs. The result are presented in table 1
and figure 2. “OCanren” column contains execution time

evalR : : Bool → Int → Stream (Term , [Bool])
evalR result maxListLength =

lit result `mplus`
var result `mplus`
neg result `mplus`
disj result `mplus`
conj result

where
conj result = do

(v , w) ← andR result
(y , st) ← evalR w maxListLength
x ← evalStR st v
return (Conj x y , st)

disj result = do
(v , w) ← orR result
(y , st) ← evalR w maxListLength
x ← evalStR st v
return (Disj x y , st)

neg result = do
v ← notR result
(x , st) ← evalR v maxListLength
return (Neg x , st)

var result = do
(z , st) ← elemR result maxListLength
return (Var z , st)

lit b = return (Lit b , [])

Listing 17. Functional implementation of the direction
evalo out out in

Var. mapping length Function (sec.) OCanren (sec.)

0 0.283 0.998
1 0.306 0.668
2 0.227 0.543
3 0.224 0.500
4 0.206 0.482
5 0.211 0.482
6 0.254 0.483
7 0.370 0.491
8 0.357 0.492
9 0.377 0.491

Table 1. Execution times of the OCanren and functional
implementations of evalo, search for 10000 formulas which
evalute to True

of relational implementation, and “Function” column con-
tains execution time of the functional implementation. In
our experiments, functional implementation outperforms
the relational interpretation by 1.3-2.5 times.
We run topsort𝑜 on directed graphs with exactly one

edge between each pair of edges. For example, graph with

https://github.com/kajigor/miniKanren-func/tree/f7a3ab72fe1a945a650a443627be35093d7224a0

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Ekaterina Verbitskaia, Daniil Berezun, and Dmitry Boulytchev

Number of vertices Function (sec.) OCanren (sec.) Function (r) (sec.) OCanren (r) (sec.)

3 0.000 0.001 0.000 0.001
4 0.000 0.015 0.000 0.012
5 0.001 0.346 0.000 0.107
6 0.021 14.309 0.003 0.764

Table 2. Execution times of the OCanren and functional implementations of topsorto

evalStR : : [Bool] → Bool → Stream Term
evalStR st result =

lit st result `mplus`
var st result `mplus`
neg st result `mplus`
disj st result `mplus`
conj st result

where
conj st result = do

(v , w) ← andR result
y ← evalStR st w
x ← evalStR st v
return (Conj x y)

disj st result = do
(v , w) ← orR result
y ← evalStR st w
x ← evalStR st v
return (Disj x y)

neg st result = do
v ← notR result
x ← evalStR st v
return (Neg x)

var st result = do
z ← elemStR st result
return (Var z)

lit st b = Lit b

Listing 18. Functional implementation of the direction
evalo out in in

4 vertices has the following edges: [(0, 1) , (0, 2) , (0,
3) , (1, 2) , (1, 3) , (2, 3)], whichwe sort lexicograph-
ically. We generated graphs for a given number of vertices
and then executed both relational and functional implemen-
tations of topsort𝑜 . The correct numbering in this condi-
tion should map each vertex into itself. We also run the
same functions on the same graph, but with its list of edges
reversed, i.e. [(2, 3) , (1, 3) , (1, 2) , (0, 3) , (0,
2) , (0, 1)]. In this case, the correct numbering maps a
vertex i into n − i, where n is the number of vertices in the
graph.
Execution times averaged over 10 runs are presented in

table 2 and figure 1. Columns “Functional” and “Functional
(r)” contain execution times of functional implementations

andR : : Bool → Stream (Bool , Bool)
andR True = return (True , True)
andR False = return (True , False) `mplus`

return (False , True) `mplus`
return (False , False)

orR : : Bool → Stream (Bool , Bool)
orR True = return (True , True) `mplus`

return (True , False) `mplus`
return (False , True)

orR False = return (False , False)

notR : : Bool → Stream Bool
notR True = return False
notR False = return True

elemR : : Bool → Int → Stream (Int , [Bool])
elemR _ maxListLength | maxListLength <= 0 = Empty
elemR result maxListLength =

zero result `mplus` succ result
where

zero result = fromList [(0 , result : tl) |
tl ← genList genBool (maxListLength − 1)]

succ result = do
(n ' , t) ← elemR result (maxListLength − 1)
fromList [(n ' + 1 , h : t) | h ← genBool]

Listing 19. Functions used in logic formulas generation

Number of vertices

Ti
m

e
(m

ic
ro

se
c)

1

10

100

1000

10000

100000

3 4 5 6

Function OCanren Function (r) OCanren (r)

Figure 1. Comparison of exection time of topologic sort
(logarithmic scale, time measured in microseconds)

On a Direction-Driven Functional Conversion Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Substitution length

Ti
m

e
(s

ec
)

0.00

0.25

0.50

0.75

1.00

0 1 2 3 4 5 6 7 8 9

OCanren Function

Figure 2.Comparison of exection time of formulas generator
(time measured in seconds)

when run on a graph and reversed graph correspondingly.
Columns “OCanren” and “OCanren (r)” contain execution
times of functional implementations when run on a graph
and reversed graph correspondingly. Relational implemen-
tation took more than 300 seconds for a sorted graph with
7 vertices, thus we only consider graphs with up to 6 ver-
tices. On all graphs, functional implementation is faster than
the miniKanren program. Topologically sorting a reversed
graph takes significantly less time. This is caused by earlier
rejection of candidate solutions, since vertex numbers are
higher in the beginning of the list.

As a result of our evaluation, we can conclude that the con-
version of miniKanren program with a given direction into
a function speeds up execution a lot and thus it is reasonable
to continue working in this direction.

5 Related Work
There are several research area relevant to our conversion.
Semantic modifiers [1] and universal resolving algorithm [3]
may be used for inverse interpretation of first order func-
tional programs. They do not guarantee termination in gen-
eral, which is reasonable, given that the problem is undecid-
able.
Logic and relational programming languages inherently

support inverse computations, but they often come with sig-
nificant overhead. Reducing such overheadmay be donewith
such techniques as partial evaluation, or partial deduction.
Applying these techniques to miniKanren has not yet done
successfully, although some speed ups were achieved [11].
Functional logic programming languages such as Curry

and Mercury translate their logic subsets into a general pro-
gramming language. Mercury uses a sophisticated system
of modes along with mode analysis [9] which we plan to
adapt to miniKanren as part of future work. The search
strategy in Mercury is not complete which limits its use for
our application.

Curry has several compilers including the one whose tar-
get language is Haskell [4]. Although, Curry provides some

flexibility in choosing the search strategy [5], it uses choice
to implement nondeterminism instead of unifications.
An earlier attempt at conversion of miniKanren into a

functional program has been made. It involved binding-time
analysis to determine in/out annotations of variables [10]. It
only works for directions which return finite answer streams
which severely limits its applications.

There exist an automatic conversion from a subset of
OCaml into OCanren [8]. Coupling it with conversion from
miniKanren back into OCaml can be used to efficiently
inverse computations.

6 Future Work
Since this project is in active phase of development, there
are many directions for future work.
First of all, we need to research how to best order calls

within a conjunction. Since the order of calls greatly influ-
ences the efficiency of the converted function, this research
direction is of upmost importance. Annotations of variables
with in and out are also affected by the order of calls and
thus we need to adapt the mode analysis to take it into ac-
count.
Second of all, we plan to formalize the conversion and

prove its correction.
Third of all, the conversion should be implemented either

as a standalone tool or integrated into some of the major
miniKanren implementations.

Finally, after all these building blocks are done, we would
like to integrate the conversion into a relational interpreters
framework. This would made a fullstack solution for the
program inversion problem.

7 Conclusion
In this paper we described a new conversion from a miniKan-
ren relation with a fixed execution direction into a func-
tional programming language. We manually converted sev-
eral miniKanren relations and compared execution time of
the converted functions with their relational sources. The
evaluation showed that the conversion is able to speed up
computations significantly. We also mentioned some com-
plicated steps within conversion and outlined directions for
future research.

References
[1] Sergei Abramov and Robert Glück. 2001. From standard to non-

standard semantics by semantics modifiers. International Journal
of Foundations of Computer Science 12, 02 (2001), 171–211.

[2] Sergei Abramov and Robert Glück. 2002. Principles of Inverse Computa-
tion and the Universal Resolving Algorithm. Springer Berlin Heidelberg,
Berlin, Heidelberg, 269–295. https://doi.org/10.1007/3-540-36377-7_13

[3] Sergei Abramov and Robert Glück. 2002. Principles of inverse com-
putation and the universal resolving algorithm. In The essence of
computation. Springer, 269–295.

https://doi.org/10.1007/3-540-36377-7_13

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Ekaterina Verbitskaia, Daniil Berezun, and Dmitry Boulytchev

[4] Bernd Braßel, Michael Hanus, Björn Peemöller, and Fabian Reck. 2011.
KiCS2: A new compiler from Curry to Haskell. In International Work-
shop on Functional and Constraint Logic Programming. Springer, 1–18.

[5] Michael Hanus, Björn Peemöller, and Fabian Reck. 2012. Search strate-
gies for functional logic programming. Software Engineering 2012.
Workshopband (2012).

[6] Oleg Kiselyov, Chung-chieh Shan, Daniel P Friedman, and Amr Sabry.
2005. Backtracking, interleaving, and terminating monad transformers:
(functional pearl). ACM SIGPLAN Notices 40, 9 (2005), 192–203.

[7] Petr Lozov, Ekaterina Verbitskaia, and Dmitry Boulytchev. 2019. Re-
lational interpreters for search problems. In Relational Programming
Workshop. 43.

[8] Petr Lozov, Andrei Vyatkin, and Dmitry Boulytchev. 2017. Typed rela-
tional conversion. In International Symposium on Trends in Functional
Programming. Springer, 39–58.

[9] David Overton, Zoltan Somogyi, and Peter J Stuckey. 2002. Constraint-
based mode analysis of Mercury. In Proceedings of the 4th ACM SIG-
PLAN international conference on Principles and practice of declarative
programming. 109–120.

[10] Ekaterina Verbitskaia, Irina Artemeva, and Daniil Berezun. 2020.
Binding-Time Analysis for miniKanren. https://www.coalg.org/tease-
lp/files/2020/05/verbitskaia.pdf. Workshop on Trends, Extensions,
Applications and Semantics of Logic Programming.

[11] Ekaterina Verbitskaia, Daniil Berezun, and Dmitry Boulytchev. 2021.
An Empirical Study of Partial Deduction for miniKanren. In Proceed-
ings of the 9th International Workshop on Verification and Program
Transformation, Luxembourg, Luxembourg, 27th and 28th of March
2021 (Electronic Proceedings in Theoretical Computer Science), Alexei
Lisitsa and Andrei P. Nemytykh (Eds.), Vol. 341. Open Publishing
Association, 73–94. https://doi.org/10.4204/EPTCS.341.5

A Principal Directions of the Addition
Relation

add : : Stream (Nat , Nat , Nat)
add =

disj1 `mplus` disj2
where

disj1 = do
z ← genNat
return (O , z , z)

disj2 = do
(x ' , y , z ') ← add
return (S x ' , y , S z ')

Listing 20. Function for addo out out out direction

addY : : Nat → Stream (Nat , Nat)
addY y =
return (O , y) `mplus`
do

(x ' , z ') ← addY y
return (S x ' , S z ')

Listing 21. Function for addo out in out direction

addXZ : : Nat → Nat → Stream Nat
addXZ x z =

case x of
O → return z
S x ' →

case z of
O → Empty
S z ' →
addXZ x ' z '

Listing 22. Function for addo in out in direction

addYZ : : Nat → Nat → Stream Nat
addYZ y z =

if y == z
then return O
else
case z of
S z ' → do

x ← addYZ y z '
return (S x)

O → Empty

Listing 23. Function for addo out in in direction

https://www.coalg.org/tease-lp/files/2020/05/verbitskaia.pdf
https://www.coalg.org/tease-lp/files/2020/05/verbitskaia.pdf
https://doi.org/10.4204/EPTCS.341.5

	Abstract
	1 Introduction
	2 Preliminaries
	3 Conversion by Examples
	3.1 Basic Conversion
	3.2 Nondeterministic Directions
	3.3 Free Variables in Answers
	3.4 Predicates
	3.5 Order within Conjunctions

	4 Evaluation
	4.1 Topologic sort
	4.2 Logic Formulas Generation
	4.3 Execution Time Comparison

	5 Related Work
	6 Future Work
	7 Conclusion
	References
	A Principal Directions of the Addition Relation

