
Wildcard Logic Variables

How to say in miniKanren that natural number is less than 5?

Dmitry Kosarev
Saint Petersburg State University

Russia
Dmitrii.Kosarev@pm.me

Daniil Berezun
JetBrains Research
The Netherlands

daniil.berezun@jetbrains.com

Peter Lozov
Saint Petersburg State University

Russia
lozov.peter@gmail.com

Abstract

We propose a new kind of logic variables – wildcard variables
– as a limited form of universal quantification. Combinedwith
disequality constraints they extend the expressive power of
OCanren – typed dialect of miniKanren, and enrich subset
of OCaml programs that could be automatically converted to
relational ones. We also report our progress on applying this
idea to a task of synthesizing pattern matching compilation
scheme.

CCS Concepts: • Software and its engineering→ Con-

straint and logic languages; Source code generation.

Keywords: relational programming, relational interpreters,
pattern matching, constraint programming

1 Introduction

Relational and logic programming are powerful techniques
for enumerating the space of possible answers for a query.
Constraints allow us to prune search space and to make path
to there right answer short. Some constraints (for example,
disequality [Byrd 2009]) are universally applicable, but it’s
OK to invent new special constraints for specific tasks.
The miniKanren family of languages includes differ-

ent implementations, both statically and dynamically types.
There are some peculiarities in statically typed implemen-
tation OCanren [Kosarev and Boulytchev 2016] relatively
to “official” implementation [Ballantyne and et al. 2017]. For
example, the following result of the query is decent in lan-
guages like Scheme, but in statically typed OCaml the result
looks weird.

; Scheme

> (run 1 (q) (. q #t) (. q #f))
((_ . 0 (. ((_ . 0 #f)) ((_ . 0 #t)))))

(* OCaml *)

> run . . . (_q→ (q . ! !true) &&& (q . ! !false))
q=_ . 0 [. false ; . true] ;

This work is licensed under a Creative Com-
mons “Attribution-ShareAlike 4.0 Interna-
tional” license.
miniKanren 2022, September 15 2022, Ljubljana, Slovenia

© 2022 Copyright held by the author(s).
ACM ISBN 978-1-4503-XXXX-X/18/06.

Indeed, in Scheme there are infinitely many possible values
for variables that are neither #t, nor #f. But in OCanren the
compiler prohibits unification of variables with non-unifiable
types, so variable q could be bound in a substitution only to
true, false or another fresh variable; and expected result
of the query is empty stream.
The example above could be repaired by introduction of

finite domain constraints [Alvis et al. 2011], but in case of
proper algebraic data types they doesn’t help. Let’s imag-
ine that we want to express that a variable holds a list, but
couldn’t begin from a constructor Cons. The naïve attempt in
OCanren, fresh (h tl) (q. cons h tl) doesn’t give
us what we desire. It states that there are some h and tl such
that q is not equal, but we expected that fact for any possible
h and tl. This form of universal quantification is currently
not expressible in OCanren.
Another example of algebraic data types are Peano num-

bers. Unification allows us to express that a peano number q
is greater or equal a constant: q ≡ S (S (S _ .10)). But dise-
quality constraints are not powerful enough to express that
a number is less than a constant.
In this paper we introduce wildcard logic variables (de-

noted as __) which are able to solve problem like above. The
disequality q . S (S (S __)) states that two values are not
equal no matter what we would substitute instead of __,
which will effectively filter out S (S (S Z)) , S (S (S (S Z))) ,
i.e. all numbers greater or equal three. This single disequality
is an only constraint that is required to describe finitely “a
peano number is less then constant N”. In default implemen-
tations of miniKanren we could write a disjunction of three
cases but this will hurt performance of the search.

2 Informal Description

In this section we describe the essence of wildcard variables
and how they interact with other features of miniKanren.

2.1 Wildcards and Disequality Constraints

Checking and storing disequality constraints may be per-
formed in clever manner [Ballantyne and et al. 2017]. Dise-
quality constraints are stored as a conjunction of disjunctions
of pairs (CNF): a fresh variable and a term (or an another
variable). While the search progresses, new bindings are
propagated to inequalities which allows simplification. For
example, if one of the bindings is impossible to be unified,
then it is being removed from the disjunction clause. If whole

https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en

miniKanren 2022, September 15 2022, Ljubljana, Slovenia Dmitry Kosarev, Daniil Berezun, and Peter Lozov

disjunction becomes non-unifiable, then it could be removed
from CNF. If a disjunction clause becomes unifiable in any
substitution, then it becomes violated and whole CNF too.
In our implementation wildcard variables may occur in

program many times. But internally it is a single logic vari-
able (predefined “constant” is some sense), that it treated
in a special way. On creation of a disequality constraint we
perform unification which gives an updated substitution and
a list of recently introduced bindings. Our implementation
of wildcard unification doesn’t add anything to substitution,
but adds new bindings as usual. Our disequality constraints
implementation evaluates these bindings and stores in every
conjunction clause not only pairs, but also a set of variables
that should not be wildcards.
Let’s discuss details of checking disequality constraints

in presence of wildcards using examples. Below we will use
the mantra “It should be a way to make two values not equal,

in spite of we could substitute anything instead of wildcard.”

to make decisions about simplification of constraints. We
start from simple cases, and leave the complicated cases (a
disequality between fresh variable and wildcard) to the end.

Consider the disequality (1 _ .10) . (__ 2) where either
first components of pair should be not equal, or second ones.
With first components we are going to consider worst case
scenario and substitute a number 1 instead of wildcard. The
constraint above simplifies to a shorter disequality between
_ .10 and 2. All disequalities between ground values and
wildcard variable will be simplified immediately.

On disequality of twowildcard variables we again consider
worst case scenario: we substitute, for example, 42 instead
of both and get a violation of disequality constraints.
Disequality between wildcard and complex value, for ex-

ample cons 1 _ .10 . __, could be also simplified. We con-
sider a worst case scenario and use cons __ __ instead of
wildcard. (But this simplification requires deep understand-
ing of variable’s domain, and currently not implemented.)
Disequalities between fresh variables and complex

values with wildcards inside are left as they are.
Later, we could get more information about fresh
variable and simplify the constraint. For example,
(cons __ __ . _ .10) & (cons _ .11 _ .12 ≡ _ .10)
simplifies to “either _ .11 or _ .12 is not wildcard”.
The case above leads us to the most complicated case:

a disequality between fresh variable and wildcard. If we
consider fresh variables as existential ones, the decision may
look trivial: if variable q should not be equal wildcard, we
will easily violate this constraint by substituting q instead of
wildcard. But actually this substitution could be not possible,
for example, if variable q has an empty domain. Moreover,
we should use hypothesis that any fresh variables have non
empty domain, to allow attaching a domain information to
variable q later in the search. Without this hypothesis our
miniKanren implementation would be less declarative.

2.2 Unification

The primary usage of wildcard variables is in the context of
disequality constraints. Despite there is only a single wild-
card variable in runtime, we need a special combinator (sim-
ilar to call_fresh) that creates wildcard variable. This is
specific to OCanren – typed embedding of miniKanren to
OCaml – where we can unify only logic values of the same
type. That’s whywe needmany instances of differently typed
wildcard variables.

The proposed wildcard variables are not designed to be
used in unification, but we decided to allow wildcard syntax
__ in unification anyway. This “wildcards” have a different
semantics from proposed in this paper, they looks resembles
more traditional wildcards from pattern matching in OCaml:
they are just a convenient syntax to avoid manual creation
of fresh variables. In the example below we demonstrate
two implementations of a relation that extract tail of the list:
with wildcard syntax and without them. All occurrences of
__ are translated to calls of primitive combinators by a macro
expansion.

let tlo xs tl =
(xs ≡ List .conso __ tl)

let tlo xs tl =
fresh (h) (xs ≡ List .conso h tl)

The macro expansion is responsible for insertion of wildcard
variables into right places, but end user could create mean-
ingless OCanren expression bypassing macro expansion.
Right now we don’t defend against that. But it should be
doable if we add for every logic variable a phantom type
variable1 which says whether logic variable can be used in
unification, disequality or both.

3 Related Works

The described approach with wildcard logic variable strongly
reminds a form of universal quantification. Nowadays, the
“official” implementation [Ballantyne and et al. 2017] of
miniKanren in Scheme don’t yet support any form of uni-
versal quantification. In this section we will observe two ap-
proaches two universal quantification, and two areas where
our wildcard logic variables could be helpful.

3.1 Eigen

One of the form of universal quantification are eigen vari-
ables [Byrd 2013]. This approach allows to introduce new
fresh named existential variables as usual, and new eigen
named variables, which are unifiable with themselves and
with fresh variables introduced in their scope. The primary
purpose of eigen variables is synthesis a fixpoint combinator
in combinatory logic, and this task is being solved without
any usage of disequality or other constraints. The interaction
1Behavioural types by KC Sivaramakrishnan (accessed: August 29, 2022)

https://kcsrk.info/ocaml/types/2016/06/30/behavioural-types/

Wildcard Logic Variables

How to say in miniKanren that natural number is less than 5? miniKanren 2022, September 15 2022, Ljubljana, Slovenia

between eigen variables and constraints is not handled by
the implementation of eigen dialect of miniKanren. During
personal interactions over email we are told that the perfor-
mance of current implementation of eigen and disequality
constraints is troublesome, because it seems to be required
to recheck possible equalities between all introduced logic
variables and eigen variables.

The one could consider our approach as a simplified form
of eigen variables. We don’t attach any names to our wild-
card variables, so rechecking all possible pairs of inequalities
doesn’t make much sense. This makes out approach less
expressive than eigen but definitely improves search termi-
nation. Say, from one point of view the following goal can’t
be expressed via wildcard variables.

(run 1 (q) (fresh (a b) (eigen (x)
(. `(,x ,x) `(,a ,b))) (== a 7) (== b 7)))

From another point of view, this goal diverges since it calcu-
lation collects all disequality constraints and then simplifies
process them once.

Next, eigen variablemay occur before fresh variableswhile
it is not the case with wildcards. Consider the following
example with eigen variable:

(run 1 (q) (eigen (x) (fresh (y) (. x y))))

It succeeds since whatever for any given x, one can choose
a y distinct from x. While wildcarded expression

(run 1 (q) (fresh (y) (__ . y)))

fails as well as its eigen equivalent

(run 1 (q) (fresh (y) (eigen (x) (. x y))) .

Also, our wildcard variables should be used in disequality
constraints. Antagonistically, the implementation of eigen
variables uses them in unifications. The detailed compari-
son of expressiveness of wildcards and eigen variables in
disequality constraint requires further studying.

3.2 Universal Quantification and Implication

An interesting idea from [Jin et al. 2021] is to mine examples
from the domain of universally quantified variable one by
one, cut these points from the domain and wait until it be-
comes empty. This approach is promising for finite domains,
but for recursively described ones it could lead to divergence.
We are looking forward for upgraded implementations of
the approach, to check it out for tasks that are important for
us.

3.3 noCanren

Writing relational programs well requires gaining some skill.
The tempting idea is to generate relational programs from
functional ones. A subset of OCaml could be automatically
converted [Lozov et al. 2018] to OCanren, but current lan-
guage restrictions make the usage of it inconvenient. For ex-
ample, to have a decent semantics of a relation programs, it’s

required for every pattern matching in functional program
that all it’s branches are non-overlapping. This shortcom-
ing exists because of normal disequality constraints are not
powerful enough to express desired result, and the manual
process of making pattern non-overlapping leads to expo-
nential increasing of a number of patterns. We believe that
adding wildcards is a step to solve this embarrassment (sec-
tion 4).

3.4 Relational Synthesis of Pattern Matching

The state of art approach to compile pattern matching in
OCaml to intermediate representation is translation to back-
tracking automaton [Le Fessant and Maranget 2001]. In the-
ory we could implement a relational interpreter of interme-
diate representation, and synthesize a compilation scheme
that behave on a pack of examples as we desire [Kosarev et al.
2020]. In practice, a number of examples is finite but large.
It depends more on a number of inhabitants of scrutinee’s
type until certain depth, than on a number of patterns in
pattern matching. Ideally, we want to have for exhaustive
pattern matching as many examples as we have branches.
The wildcard variables allow us to make a step in that di-
rection. But they we are currently far away from finishing
that task, because of hidden complications of the task. We
describe our progress in section 5.

4 noCanren

Translation of pattern matching from functional program
to relational conde clauses could be non-trivial if a few
branches overlap. For a functional program from Figure 1a1
one could try a straightforward encoding without any con-
straints:

let straightforward q rez =
conde

[fresh ()
(rez ≡ ! ! 1)
(q ≡ Std .pair ! !true __)

; fresh (l r)
(rez ≡ ! ! 2)
(q ≡ Std .pair l r)

]

Unfortunately, this encoding to relational program will have
a different semantics from functional one. If scrutinee is a
pair of true’s, the stream of answers will have both (rez≡1)
and (rez≡2) from the first and the second branches of conde,
respectively. The first answer is expected, but the second
one contradicts behaviour of the functional program: the
second branch should not be tested if previous one fits the
scrutinee. This issue appears only if branches overlap, and
to get a proper semantics the approach of relational con-
version [Lozov et al. 2018] and associated tool2 decided to
2
https://github.com/Lozov-Petr/noCanren (accessed: August 1st, 2022)

https://github.com/Lozov-Petr/noCanren

miniKanren 2022, September 15 2022, Ljubljana, Slovenia Dmitry Kosarev, Daniil Berezun, and Peter Lozov

match x , y with
| T , _ → 1
| _ , _ → 2

(a1) Pattern matching

if x

then 1
else 2

(a2) Optimal implementation

(a) Simple patterns matching example

match x , y , z with
| _ , F , T → 1
| F , T , _ → 2
| _ , _ , F → 3
| _ , _ , T → 4

(b1) Pattern matching

if y then
if x then

if z then 4 else 3
else 2

else
if z then 1 else 3

(b2) Optimal implementation

(b) Pattern matching compilation example (from [Le Fessant and
Maranget 2001])

let naive_rel q rez =
conde

[fresh (tmp)
(q ≡ pair ! !true tmp)
(rez ≡ ! ! 1)

; fresh (tmp l r)
(q . pair ! !true tmp)
(q ≡ pair l r)
(rez ≡ ! ! 2)

]

(c) Naïve compilation with disequality constraints

let better_rel q rez =
conde

[fresh ()
(q ≡ pair ! !true __)
(rez ≡ ! ! 1)

; fresh ()
(q . pair ! !true __)
(rez ≡ ! ! 2)

]

(d) Better compilation with wildcards

Figure 1. Pattern matching compilation example

let enc_with_diseq q rez =
let _T = ! !true in
let _F = ! !false in
let w = Std .triple in
conde

[fresh (fresh1) (rez ≡ ! ! 1)
(q ≡ w fresh1 _F _T)

; fresh (fresh1 x) (rez ≡ ! ! 2)
(q ≡ w _F _T fresh1)
(q . w x _F _T)

; fresh (fresh1 fresh2 x y z) (rez ≡ ! ! 3)
(q ≡ w fresh1 fresh2 _F)
(q . w x _F _T)
(q . w _F _T z)

; fresh (x y z fresh1 fresh2) (rez ≡ ! ! 4)
(q . w x _F _T)
(q . w _F _T z)
(q . w x y _F)
(q ≡ w fresh1 fresh2 _T)]

(a) With disequality constraints

let enc_with_wc q rez =
let _T = ! !true in
let _F = ! !false in
let w = Std .triple in
conde

[fresh () (rez ≡ ! ! 1)
(q ≡ w __ _F _T)

; fresh () (rez ≡ ! ! 2)
(q ≡ w _F _T __)
(q . w __ _F _T)

; fresh () (rez ≡ ! ! 3)
(q ≡ w __ __ _F)
(q . w __ _F _T)
(q . w _F _T __)

; fresh () (rez ≡ ! ! 4)
(q . w __ _F _T)
(q . w _F _T __)
(q . w __ __ _F)
(q ≡ w __ __ _T)]

(b) With wildcards

Figure 2. Two possible encodings of an example from Fig. 1b

Wildcard Logic Variables

How to say in miniKanren that natural number is less than 5? miniKanren 2022, September 15 2022, Ljubljana, Slovenia

1 q=((_ . 13 , false , true) , 1) ;
2 q=((false , true , _ . 15) , 2) ;
3 q=((_ . 13 , _ . 14 , false) , 3) ;
4 q=((_ .13 [. false ; . _ . 22] , _ . 14 , true) , 4) ;
5 q=((_ .13 [. false] , _ . 14 , false) , 3) ;
6 q=((_ .13 [. _ . 22] , _ . 14 , true) , 4) ;
7 q=((_ . 13 , _ .14 [. true] , false) , 3) ;
8 q=((_ .13 [. _ . 22] , _ .14 [. true] , true) , 4) ;
9 q=((_ .13 [. false] , _ .14 [. false] , true) , 4) ;
10 q=((_ . 13 , _ .14 [. false] , true) , 4) ;
11 q=((_ . 13 , _ .14 [. false ; . true] , true) , 4) ;

(a) With disequality constraints

q=((_ . 13 , false , true) , 1) ;
q=((false , true , _ . 15) , 2) ;

q=((_ .13 [. false] , _ . 14 , false) , 3) ;

q=((_ . 13 , _ .14 [. true] , false) , 3) ;
q=((_ .13 [. false] , _ .14 [. false] , true) , 4) ;

q=((_ . 13 , _ .14 [. false ; . true] , true) , 4) ;

(b) With wildcards

Figure 3. The output of running two encodings from Figure 2 where scrutinee is a triple of three fresh variables
(_ .13, _ .14, _ .15) . One can observe that disequality constraints generate more (bogus) answers. Also, the last answer
raises the idea that finite domain constraints may be useful for that example.

forbid overlapping branches and not to use any constraints
in generated code. The developer needs to manually rewrite
branches of pattern matching, which is annoying and could
lead to exponential increasing of the number of branches.
For an example shown in Figure 1a we also provide en-

codings (Figure 1) with default disequality constraints and
with wildcards.

An execution of this pattern matching on four possi-
ble ground scrutinees, encoding using wildcards provides
four expected results: if first element of pair is true, return
1; on false – 2. Running naïve compilation scheme (Fig-
ure 1c) discovers two more answers: pairs (true ,false)
and (true ,true) may return 2. Indeed, two branches of
conde are not ordered, and running this scrutinees will not
fail a disequality constraint: it will be simplified to . true
and . false respectively. From this example one could con-
clude that disequality constraints are not expressive enough
to handle relational conversion of pattern matching.

One also could try to encode a more complicated example
from [Le Fessant and Maranget 2001] with four branches
and a scrutinee being a triple of booleans (Figure 1b). In Fig-
ure 2 one could observe relational encoding of this matching,
and in Figure 3 the result of querying where a scrutinee is a
triple of three fresh variables. One could see that all answers
returned by “wildcardful” relation are also returned by a re-
lation with disequality constraints. Extra answers on the left
should be considered bogus. For example, answer in line 3
about branch 3 is incorrect: the described scrutinee should be
already matched by branch 2. Also, answers in lines 8 and 10
should subsume each other. Finally, the last answer demon-
strates the need of finite domain constraints which allows
considering disequality constraint containing ambivalent
information such as [. false ; . true] violated.

The above demonstrates how wildcard usage allows one
to compile pattern matching in a very elegant way without
the need of disjoint conde-s.

5 Synthesis of Pattern Matching

In this section we briefly describe the task of synthesis of
pattern matching compilation scheme [Kosarev et al. 2020]
and how wildcard patterns may improve the situation.

The pattern matching expression match a scrutinee 𝑣 from
a set of values V of algebraic data types with a finite set of
patterns P, and produces an integer – index of the pattern,
such that it matches provided scrutinee and the ones before
it doesn’t. For simplicity we suppose that the set patterns
is exhaustive, i.e. it is impossible to provide the scrutinee
which doesn’t fit any pattern.

C = {𝐶𝑘1
1 , . . . ,𝐶

𝑘𝑛
𝑛 }

V = CV∗

P = _ | C P∗

⟨𝑣 ; 𝑝1, . . . , 𝑝𝑘⟩ −−−→ 𝑖, 1 ⩽ 𝑖 ⩽ 𝑘 ; 𝑣 ∈ V;𝑝1, . . . , 𝑝𝑘 ∈ P

For every synthesis task the patterns and indexes are
ground. Type information is also available. For every sub-
value in scrutinee we know which constructors makes sense
to match, it’s arities and type information of constructors’
arguments.
The relation “−→” gives us a declarative semantics of pat-

tern matching. Since we are interested in synthesizing im-
plementations, we need a programmatical view on the same
problem. Thus, we introduce a language S (the “switch”
language) of test-and-branch constructs, and a evaluator
“−→ S” that matches a scrutinee to an integer. In the origi-
nal paper [Kosarev et al. 2020] this language has built-in

miniKanren 2022, September 15 2022, Ljubljana, Slovenia Dmitry Kosarev, Daniil Berezun, and Peter Lozov

1 q=(if S[0] then 4 else (if S[2] then (if S[1] then 2 else 1) else 3)) ;
2 q=(if S[0] then 4 else (if S[2] then (if S[1] then 2 else 1) else (if S[1] then 3 else _ . 1 494))) ;
3 q=(if S[0] then 4 else (if S[2] then 1 else (if S[1] then 2 else 3))) ;
4 q=(if S[0] then 4 else (if S[2] then (if S[1] then _.25863 else 1) else (if S[1] then 2 else 3))) ;
5 q=(if S[0] then 4 else (if S[1] then (if S[2] then 2 else 3) else 1)) ;
6 q=(if S[0] then 4 else (if S[2] then (if S[1] then 2 else 1) else (if S[1] then _ .1493 else 3))) ;
7 q=(if S[0] then 4 else (if S[1] then (if S[2] then 2 else 3) else (if S[2] then 1 else _ . 35148))) ;
8 q=(if S[0] then 4 else (if S[1] then 2 else (if S[2] then 1 else 3))) ;
9 q=(if S[0] then (if S[1] then 4 else 3) else (if S[1] then 2 else 1)) ;
10 q=(if S[0] then (if S[1] then 4 else 3) else (if S[1] then 2 else (if S[2] then 1 else _ . 99286))) ;

Figure 4. First ten unexpected results while compiling pattern matching from Figure 1b1

switch construction that distinguishes tags (integers) of al-
gebraic constructors. But for now we are only testing our
approach on tuples of booleans, so we have only if-then-else
construction in our language S, despite that fact that switch
supercedes if − then − else.

M = •
| M [N]

S = return N
| switch M with [C → S]∗ otherwise S
| if M startswith C then S else S

We can formulate the pattern matching synthesis problem

as follows: for a given ordered sequence of patterns 𝑝1, . . . , 𝑝𝑘
find a switch program 𝑣 ⊢ 𝜋 , such that

∀𝑣 ∈ V, ∀1 ⩽ 𝑖 ⩽ 𝑛 : ⟨𝑣 ; 𝑝1, . . . , 𝑝𝑛⟩ −−−→ 𝑖

⇐⇒
𝑣 ⊢ 𝜋 −−−→S 𝑖

The description above uses universal quantification, and
can’t be immediately transformed into relational specifica-
tion, because recursive data types may make V infinite. But
there is another observation that makes this synthesis prob-
lem representable in miniKanren. For every synthesis task
we have a ground set of patterns, and they check any scruti-
nee only into finite depth. This allows one to cut the set of
possible scrutinees until certain depth and replace universal
quantification by a finite conjunction. The downside of this
encoding is an exponential blowup of search space:

• Increasing amount of constructors in types, increases
amount of examples required, which hurts perfor-
mance.

• Increasing depth of constructors hurts performance,
but it is expected.

• Changing number of patterns while preserving the
same maximum depth doesn’t affect performance at
all. This is unexpected.

To reduce the number of required examples, we are go-
ing to use wildcard variables to say that scrutinee doesn’t

fit previous branches. In other words, every branch of pat-
tern matching have a single corresponding example. That
example will state via unification that scrutinee fits current
branch, and also will state via disequality constraints with
wildcards that scrutinee doesn’t fit previous branches.

During the search OCanren accumulates inequalities
between sub parts of scrutinee. More precisely, every
if − then − else may introduce disequality between tags of
algebraic constructors. It’s rather easy to get into situation de-
scribed in section 1, where boolean constructor is not equal
both true and false. To get rid of these bogus answers
we enhance OCanren by finite domain constraints using
Z3 [de Moura and Bjørner 2008] under the hood. Adding
this constraints complicates implementation of relational
engine, because we can’t no longer say two values are not
equal because of their corresponding sub values are not equal
(the inequality of sub values may contradict finite domain
constraints). We speculate that in presence of finite domain
constraints it may be better to store disequality constraints
as DNF instead of CNF, but for now we use traditional3 im-
plementation.
Unfortunately, wildcards can’t solve the pattern match-

ing synthesis problem themselves in a way one can expect.
The result of pattern matching synthesis for program in Fig-
ure 1b1 is shown in Figure 4. We do believe that the expected
reference answer corresponding to one from Figure 1b2 will
be eventually found by OCanren but it is definitely far from
being the first. We will demonstrate the main source of such
a behaviour by example below.
Consider pattern matching with the only branch

__ , false , true → 1. The first answer produced by the
interpreter on this example is q = 1. This is absolutely cor-
rect answer since on all scrutinees having false as the sec-
ond element and true as the third element of a triple it
produces 1. In other words, the produced answer should
have the same or bigger domain than the expected reference

3The recommended efficient way to represent disequality constraints is
available online [Ballantyne and et al. 2017]

Wildcard Logic Variables

How to say in miniKanren that natural number is less than 5? miniKanren 2022, September 15 2022, Ljubljana, Slovenia

answer. This can be seen as an analog of conservative ap-
proximation of the reference answer. Further interpretation
of other branches will make the answer produced on the
previous step more precise but still conservative.
Processing the next example the interpreter will figure

out some scrutinee that satisfies disequality constraints and
unifications from the given example. Then it will change the
program being synthesized to handle this particular scruti-
nee. In other words, each interpreter step is some conserva-
tive approximation of the reference answer. Thus, it is able
to produce the reference answer iff on each step the approx-
imation is precise. This means that the reference answer
should be eventually produced by the interpreter but after
an unpredictable amount of time.

Finally, the interpreter ends up with a stream of answers
(see Figure 4) with each answer being in some sense a con-
servative approximation of the reference one.

6 Conclusion and Future Work

In the paper we introduced a new kind of logic variables:
wildcard logic variables. For some extend they could be seen
as a rework to eigen variables designed to fit with disequality
constraints.
Wildcards allow a nice opportunity to represent answer

on queries like “a peano number that is less than constant
𝑁 ” as a single answer with a constraints, instead of enumer-
ating of 𝑁 answers. Although, this particular use case may
be expressed with eigen variables, which requires further
investigation. Also, wildcard variables allow to relax restric-
tions of pattern matching when we do relational conversion
from functional programs to relational ones. In the paper we
also studied potential application of wildcards to relational
compilation of pattern matching. The goal is to significantly
reduce a number of required examples for synthesis, but
complete solving of this task is an ongoing work.
Experiments with wildcards involve reasoning about do-

mains of logic variables, which should require adding con-
straints on domains of variables. For now, we only have finite
domain constraints implemented via Z3, but on this stage
it’s not obvious how to implement a careful description of
algebraic data types domains. We also haven’t tried yet to
measure or optimize the performance of relational search
with wildcard variables.

While working on implementation of synthesis we came
up with idea, that overspecifying existential variables in
scrutinee could be overcomed by forbidding matching on
these subparts of scrutinee for a concrete example. When
relational interpreter meets if − then − else on a forbidden
value, it ignores the value of a condition, and expects that
branches then and else should either fail or return the same
answer. It’s not obvious for us how to do it relationally,
but we couldn’t manage to implement it in a non-relational

manner anyway. We believe that this idea is worth spending
some extra time.

References

C. E. Alvis, J.Willcock, K. Carter,W. E. Byrd, and D. Friedman. 2011. cKanren:
miniKanren with Constraints. In Proceedings of the 2011 AnnualWorkshop

on Scheme and Functional Programming.
M. Ballantyne and et al. 2017. faster-miniKanren implementation in Scheme.

https://github.com/michaelballantyne/faster-minikanren

W. E. Byrd. 2009. Relational Programming in miniKanren: Techniques, Appli-

cations, and Implementations. Ph. D. Dissertation. Indiana University.
W. E. Byrd. 2013. Relational Synthesis of Programs. (2013). http://webyrd.

net/cl/cl.pdf

L. de Moura and N. Bjørner. 2008. Z3: An Efficient SMT Solver. In Tools

and Algorithms for the Construction and Analysis of Systems, C. R. Ra-
makrishnan and Jakob Rehof (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 337–340. https://doi.org/10.1007/978-3-540-78800-3_24

E. Jin, G. Rosenblatt, M. Might, and Zhang L. 2021. Universal Quantification
and Implication in miniKanren. https://www.cs.toronto.edu/~lczhang/

jin_universal2021.pdf

D. Kosarev and D. Boulytchev. 2016. Typed Embedding of a Relational
Language in OCaml. 285 (2016), 1–22. https://doi.org/10.4204/EPTCS.

285.1

D. Kosarev, P. Lozov, and D. Boulytchev. 2020. Relational Synthesis for
Pattern Matching. In Programming Languages and Systems, Bruno C. d. S.
Oliveira (Ed.). Springer International Publishing, Cham, 293–310.

F. Le Fessant and L. Maranget. 2001. Optimizing Pattern Matching. SIGPLAN
Not. 36, 10 (Oct. 2001), 26–37. https://doi.org/10.1145/507669.507641

P. Lozov, A. Vyatkin, and D. Boulytchev. 2018. Typed Relational Conversion.
In Trends in Functional Programming, MengWang and Scott Owens (Eds.).
Springer International Publishing, Cham, 39–58.

A Simple Wildcard Examples

Table 1. A few example of relational queries involving wild-
card variables

Example query Result
(__ . _ .20) success

(1, __) . (__ , 1) fail

(_ .10, 2, __) . (1, __ , 2) _ .10 . 1
(_ .10, _ .11) . (1, __) _ .10 . 1

fresh (a b)
(q ≡ pair a b)
(q . pair ! ! 1 __)
(q ≡ pair __ ! ! 1)

q ≡ (a [. 1], 1), b ≡ 1

https://github.com/michaelballantyne/faster-minikanren
http://webyrd.net/cl/cl.pdf
http://webyrd.net/cl/cl.pdf
https://doi.org/10.1007/978-3-540-78800-3_24
https://www.cs.toronto.edu/~lczhang/jin_universal2021.pdf
https://www.cs.toronto.edu/~lczhang/jin_universal2021.pdf
https://doi.org/10.4204/EPTCS.285.1
https://doi.org/10.4204/EPTCS.285.1
https://doi.org/10.1145/507669.507641

	Abstract
	1 Introduction
	2 Informal Description
	2.1 Wildcards and Disequality Constraints
	2.2 Unification

	3 Related Works
	3.1 Eigen
	3.2 Universal Quantification and Implication
	3.3 noCanren
	3.4 Relational Synthesis of Pattern Matching

	4 noCanren
	5 Synthesis of Pattern Matching
	6 Conclusion and Future Work
	References
	A Simple Wildcard Examples

