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Abstract—This paper describes the empirical study on the
partial evaluation technique applied to execution time optimiza-
tion of general matrix and string algorithms. We used AnyDSL
framework for partial evaluation during the experiments. Exe-
cution time of non-optimized code is compared with the results
of partially evaluated code and execution times of commonly
used tools. Insides on existing work and our plans are provided.
The selection of algorithms, datasets, and experiment structure
was clarified. Experiments have demonstrated speedup (up to 3
orders in some cases) of residual programs resulting after partial
evaluation using AnyDSL tool.

Index Terms—Partial evaluation, compilers, program opti-
mization, specialization, automatic program transformation, lin-
ear algebra-based algorithms

I. INTRODUCTION

Recent years have seen a significant increase in the sizes
and complexity of programs in different areas of software
engineering. Huge programs or libraries often contain some
core code on which significant parts of the program depend,
so this code needs to be highly optimized. However, creat-
ing a code with sufficiently low complexity for satisfying
performance requirements is often an outstanding and time-
consuming problem for an ordinary software engineer. A
possible way of ensuring sufficient performance or such a
code while keeping the development process comfortable for
a programmer is the usage of automatic optimization tools and
techniques, operating with program sources.

For instance, the so-called partial evaluation (or specializa-
tion) [1] technique is being actively used over the last years
as a way to optimize program execution time automatically,
using data known statically. A special tool named partial
evaluator (or specializer) analyzes data (for example, function
parameters) which was provided ahead of evaluation time, and
applies several program optimization techniques to the code
based on the structure of this data.

Existing results in the area of applied usage of partial
evaluation for automatic code optimization include image
processing [2], bioinformatics [3] and ray tracing algorithms
[4].

In this paper, we applied partial evaluation technique to a
code of several algorithms usually utilized as core algorithms
in areas connected with linear algebra and string processing.
Experiments on partial evaluation of some matrix and string

algorithms with AnyDSL [2] framework and evaluating the
suitability of the approach for application in industrial libraries
and tools are provided. For each algorithm we described the
datasets used and justified theoretical reasons why the algo-
rithm could be successfully partially evaluated using AnyDSL
tool. A compact overview of current research in the area and
an inside on our future plans was also provided.

As a result, it is showed that partial evaluation with AnyDSL
could successfully (from 10% and up to 1000 times) improve
code performance in the general cases.

II. BACKGROUND

A. Partial evaluation

Let’s suppose:
• P is a program, which takes values an [n = 1..m] as an

input
• mix is a program which is defined as mix [P, a1] = Pa

• JP K[a1, a2, .., am] = JPaK[a2, .., am]

Then the transformation of P and a1 to Pa using mix is
called partial evaluation [1]. Program mix is called partial
evaluator. In other words, partial evaluation is a technique for
evaluating parts of the program ahead of compilation with the
usage of static input data.

A classic example of partial evaluation is the evaluation
of power function. Code with linear complexity from Listing
1 could be partially evaluated using the knowledge of static
power. So, assuming n = 5 code with constant complexity on
Listing 2 could be received.

fn power(x, n):
if x == 1:

x
else:

x * power(x, n - 1)

Listing 1. Power function before evaluation

fn power5(x):
x*x*x*x*x

Listing 2. Power function partially evaluation using n = 5

Despite partial evaluation is initially being used by Ershov
[5], Jones [1] and other scientist in their work for compiler
generation via Futamura projections [6], it could also be used
for program optimization. For instance, a partial evaluator can



employ static data to unfold loops and conditional operators,
propagate constants, etc [1].

However partial evaluation is a powerful method of program
optimization, it is inherent in several difficulties. Firstly, a
partial evaluator could inflate source code size heavily be-
cause of transformation such as loop unfolding and static
data substitution. Therefore, evaluation results (code structure,
bottlenecks, etc.) formal assessment becomes a non-trivial
problem very often. To solve this issue in some degree, modern
tools like AnyDSL [2] tends to translate evaluated code
into some intermediate representation which is often much
easier to understand and analyze. Secondly, divergent program
partial evaluation with the application of average-quality tool
may lead to the evaluation process divergence [1]. So, the
programmer has to be very careful while using this technique
for optimization purposes. Finally, partial evaluation imposes
serious requirements on the programmer qualification: a deep
understanding of the evaluation process is highly required.
To solve the issue modern tools are introducing simplified
language constructions, such as a special partial evaluation
wrapper [2], attribute-driven evaluation [7] and many other
various and creative methods.

B. Matrix algorithms

Algorithms on matrices (matrix-matrix, matrix-vector mul-
tiplication, tensor product, etc.) are very common in programs
connected with linear algebra and linear algebra packages
(BLAS).

For example, it is widely known that many graph algorithms
could be explained in the language of matrices [8], [9].
Linear algebra allows constructing algorithms like Breadth-
First Search or Shortest Path Search with the exploitation of
basic linear algebra operations: matrix multiplication, Kro-
necker product and some other algorithms. Therefore, if it was
possible to speed up different matrix multiplication algorithms,
it should be possible to speed up a large class of algorithms.

One of the possible basic sets of linear algebra algorithms
and operations for graph algorithm construction is named
GraphBLAS standard [9], [10]. For our experiments we chose
matrix-matrix multiplication, and Kronecker (tensor) product
algorithms [11], which are considered as one of the core
algorithms in GraphBLAS standard.

The results of matrix algorithms benchmarking are com-
pared with the execution time of these algorithms implemented
with SuiteSparse GraphBLAS library [10], which is usually
considered as the state-of-art implementation of GraphBLAS.

Before the experiments we predicted in theory that both
of these algorithms could be successfully (without at least
noticeable lose in performance) partially evaluated due to
linear structure of their code and a relatively small number
of conditional jumps in the proper implementation.

C. Algorithms on strings

Algorithms on strings are employed in different like regular
expression handling or bioinformatics [12]. One of the most

common algorithms in this area are pattern matching (sub-
string search) and regular expression (automaton) matching
[11], so we chose these algorithms for our experiments.

Also, a pattern matching algorithm is often utilized in so-
called KMP-Test [1]. It shows how effectively the partial
evaluator could optimize trivial substring search algorithm
measured in a degree of efficiency approximation to Knuth-
Morris-Pratt algorithm execution time. Therefore, partial eval-
uation of this algorithm could give us the essential data for
the analysis.

We used adjacency matrices as regular expression au-
tomata representation since the matrix-based regular expres-
sion matching algorithm’s code is in a more linear form, so
we predict it should be evaluated better.

Existing results [1] shows that both of these algorithms
could be successfully partially evaluated and AnyDSL tool
is considered by us as a “good enough” tool to show this
theoretically good result in practice.

III. ALGORITHMS IMPLEMENTATION

All algorithms were implemented using AnyDSL Impala
domain-specific language [2] for partial evaluation. AnyDSL
framework was chosen due to its Impala DSL with com-
paratively simple Rust-like syntax and relatively available
documentation. Algorithm code is represented as computation
kernels, which is further linked with Google Benchmark-based
[13] benchmarking code. Each algorithm was implemented in
Impala twice: with partial evaluation language constructions
and without them (therefore, with no partial evaluation).

Also, every algorithm was implemented with an alternative
tool or framework that is usually used in practice for algorithm
implementation in the corresponding area. In details, the
following programs were used:

• SuiteSparse GraphBLAS [10] — for graph algorithms in
the terms of linear algebra

• Grep and eGrep — for algorithms on strings and regular
expressions

All the code is placed on GitHub:

https://github.com/ibalashov24/spec experiments

IV. EXPERIMENTAL DESIGN

In this section, our experimental design for partial evaluation
of selected algorithms using AnyDSL framework is described.

A. Experimental setup

Configuration of the experimental stand was:
• Intel Core i5-7440HQ (4x3.8GHz) CPU
• 16Gb RAM
• Ubuntu 20.04
Tools’ versions were fixed on the following commits from

their official repositories:
• Google Benchmark [13] — commit dated 22 December

2020
• AnyDSL [2] — commit dated 8 December 2020

https://github.com/ibalashov24/spec_experiments


• SuiteSparse GraphBLAS [10] — commit dated 14 July
2020

Default (e)Grep from Ubuntu 20.04 was employed.
We used SuiteSparse matrix collection [15] (and mostly

the subset of it named Harwell-Boeing matrix collection [14])
because it contains a reasonably diverse set of matrices. COO
(COOrdinate list) sparse matrix format was used.

In details, we got (both for matrix-matrix product and
Kronecker product) sparse matrices presented in Table I.

size nonzero symmetry, % values
bcsstk16 4884 147631 100 real
fs 183 1 183 1069 41.8 real
can 256 256 2916 100 binary
eye3 3 3 100 binary
2blocks 4 8 100 binary
cover 8 12 16.67 binary
mycielskian3 6 5 0 binary
trec5 8 12 0 real

TABLE I
MATRICES USED IN THE PARTIAL EVALUATION EXPERIMENTS WITH ITS

PARAMETERS

The First 3 of these matrices have a relatively big size,
so they were used on the left side of the product (matrix-
matrix and Kronecker) operator. Others were employed as
static data during partial evaluation to prevent output code
ramification and performance overhead creation since they
are characterized by a relatively small size. Also, bcsstk16
and eye3 represents boundary cases, where the elements are
concentrated near the main diagonal. To sum up, the selected
matrices and their combinations represent a diverse class of
matrices with different sizes, value types, symmetry percent-
ages and boundary cases. So, the results presented in the
current paper could be assumed as accurate for a much larger
number of data.

For string algorithms, we used random strings and traffic
dumps as sources and random strings or Latin words as
patterns in order to show the results in a near-average case.
Regular expressions (finite automata) were converted to COO
sparse representation with our modification of Re2dfa tool
[16]. Our benchmark used “short” strings with the length
smaller than 200 characters as static data to avoid generated
code ramification and overhead creation.

AnyDSL partial evaluation tool was executed in JIT-mode
[2], which allows to perform partial evaluation at the run time.

B. Research questions

To evaluate our approach, we design experiments to address
the following research questions:
Q1: Does partial evaluated benefits string and matrix-based

graph algorithms performance (execution time) compar-
ing to their basic versions?

Q2: In which degree partially evaluated algorithms code per-
formance gets closer to their state-of-art implementa-
tions?

C. Result metrics

To evaluate the performance of partially evaluated code,
we adopt the following widely used metrics for application
performance:

• Execution time is computed by the Google Benchmark
tool and measured in nanoseconds. For each algorithm,
the tool gives three numbers: time spent in real life, time
spent on CPU, and iteration number. We took time spent
in real life to consider all hardware delays (for example,
memory access delays).
The smaller execution time is better.

• Measure error is computed by the Google Benchmark
tool and measured in percents.
Numbers smaller than 0.01% are considered a good result
which guarantees a relatively small threat to validity.

V. RESULTS

This section presents our experimental results by addressing
the research questions.

A. Does partial evaluation with AnyDSL benefits string and
matrix-based graph algorithms performance comparing to
their basic versions?

As seen from Tables II and III and Figure 1, partial
evaluation gives significant, up to several times, speed up on
test cases involving 2blocks, cover, mycielskian3 and trec5
as right multiplicator. It may be explained with relatively
distributed structure of these matrices non-zero elements, that
allows partial evaluator to effectively perform optimizations
like loop unfolding and constant propagation.
In contrast, non-zero elements of eye3 matrix are concentrated
near the main diagonal of the matrix which leads to relatively
small execution time benefit (or absent) of partial evaluation
— loop unfolding does not discard any empty iterations. We
can also notice that the fact bcsstk16 matrix elements are
concentrated near the main diagonal does not affect execution
times, because the partial evaluator can not make use of this
fact in the dynamic matrix.

For string algorithms, we may observe a much more notice-
able execution time increase after a partial evaluation than in
graph algorithms. As could be seen from Table IV and Table
V, the speed up lays between 10 and 100 times depending
on the test. The reason for such a significant increase is that
the most of iterations in classic substring search and pattern
matching algorithms [11] with matrix input is not empty, like
in previously discussed algorithms on sparse matrices graphs.
Also, in substring search algorithm evaluation is simplified by
the fact that the data is being iterated successively.
Moreover, there is an absent of non-logical operations with
both source and pattern data as operands in these algorithms,
so the partial evaluator can apply constant propagation opti-
mization heavily due to trivial data separation.

The results show that in general partial evaluation with
AnyDSL benefits string and matrix-based graph algorithms
execution time comparing to their basic versions.



Time,ns
(Spec
No Spec
SuiteSparse)

× eye3 × 2blocks × cover × mycielskian3 × trec5

bcsstk16 × 93608
121855
2270

133434
157850
7064

364772
4842889
8559

171085
2129094
511

308535
5226893
505

fs 183 1 × 7796
6752
2553

20187
42353
12310

6928
38250
9796

1358
15194
506

6078
42493
507

can 256 × 1016
1177
2259

5106
38221
6549

20339
66987
9409

2561
23105
503

9548
62668
506

TABLE II
EXECUTION TIME COMPARISON OF MATRIX MULTIPLICATION ALGORITHM NON-SPECIALIZED CODE (NO SPEC),

SPECIALIZED CODE IN ANYDSL IMPALA (SPEC), CODE IMPLEMENTED WITH MODEL TOOL (SUITESPARSE)

Time,ns
(Spec
No Spec
SuiteSparse)

⊗ eye3 ⊗ 2blocks ⊗ cover ⊗ mycielskian3 ⊗ trec5

bcsstk16 ⊗ 140628
140744
901878

276222
3032308
2145104

433397
4307538
4420688

276433
1967189
2958016

481805
4571625
1440326

fs 183 1 ⊗ 916
934
25833

2186
21272
45159

3046
31732
88847

1838
14533
35109

3146
34356
47912

can 256 ⊗ 1159
1069
35162

2772
30841
60600

4512
45731
130084

2736
22079
43479

4576
49512
61500

TABLE III
EXECUTION TIME COMPARISON OF KRONECKER (TENSOR) PRODUCT ALGORITHM NON-SPECIALIZED CODE (NO SPEC),

SPECIALIZED CODE IN ANYDSL IMPALA (SPEC), CODE IMPLEMENTED WITH MODEL TOOL (SUITESPARSE)

Time, ns Big source 1 Big source 2 Small pattern
No spec 33129202 28983335 2413
Spec 11757516 11686216 922
Grep (approx.) 24000000 50000000 1000

TABLE IV
EXECUTION TIME COMPARISON OF PATTERN MATCHING NON-SPECIALIZED CODE (NO SPEC),

SPECIALIZED CODE IN ANYDSL IMPALA (SPEC)
AND APPROXIMATE TIME (THE TOOL OUTPUT IS IN INTEGER MS) FOR CODE IMPLEMENTED WITH MODEL TOOL (GREP)

B. In which degree partially evaluated algorithms code per-
formance gets closer to their state-of-art implementations?

Tables II, III, IV and V show the time (in nanoseconds)
of execution of matrix-based graph and string algorithms
respectively.

For the string algorithms, we can see that partially evaluated
code outperforms Grep (for pattern matching) and eGrep (for
regular expressions matching) in several times (2 to 10000) on
each of the datasets. However AnyDSL beat (e)Grep in both
pattern and regular expression matching problems, we could

see that the latter gave by several orders of magnitude stronger
results. According to our analysis, it could be the result of
using COO representation for regular expression’s transition
graph in the experiment: linear structure of a COOrdinate list
structure allows the partial evaluator to use more aggressive
optimizations such as vectorization or easier loop unfolding.

For graph algorithms in a matrix form (matrix multiplica-
tion and Kronecker product), we may observe that partially
evaluated algorithms’ code underperforms code of the same
algorithms implemented with SuiteSparse GraphBLAS in 10
times in average. It could be considered a good result, since



Time, ns Email (weak) Email Credit card
No Spec 1273112850 1951322141 1824
Spec 1623176 2223887 23.2
eGrep (approx.) 118945000000 174746000000 69000000

TABLE V
EXECUTION TIME COMPARISON OF REGULAR EXPRESSION (AUTOMATA) SEARCH NON-SPECIALIZED CODE (NO SPEC),

SPECIALIZED CODE IN ANYDSL IMPALA (SPEC)
AND APPROXIMATE TIME (THE TOOL OUTPUT IS IN INTEGER MS) FOR CODE IMPLEMENTED WITH MODEL TOOL (EGREP)

Fig. 1. Comparison of matrix-matrix multiplication algorithm execution times
before and after partial evaluation for some matrices

non-partially evaluated code loses 2 orders in half of cases.
To sum up, for the selected string algorithms partially

evaluated code outperforms their industrial implementations
by execution time in a high degree; for the selected graph
algorithms in matrix form partially evaluated code lags behind
their state-of-art implementation by a factor of 10 (which
could be considered as a good result for a semi-automatic
optimization).

C. Conclusion

As a result, partial evaluation of several matrix and string
algorithms usually used as core algorithms in different pro-
grams or libraries shows relatively good results. So, we
could conclude that partial evaluation (at least, with AnyDSL
framework) could be successfully applied as a helper technique
for a programmer, who intends to automatically optimize
algorithmic code in high-loaded systems.

VI. THREATS TO VALIDITY

A. Subject selection bias

In our research, we use only AnyDSL framework for the
experiments. Other partial evaluation tools may give slightly
different results due to more or less aggressive optimizations
or different evaluation techniques.

B. Used datasets

Despite trying to run experimental code on both versatile
and special datasets, we admit that partially evaluated code
could give slightly different measures on some other special
degenerate matrix sets.

VII. RELATED WORK

Partial evaluation of linear algebra (especially matrix algo-
rithms) was studied before in several papers.

Firstly, it is measured [17] that partial evaluation of matrix
convolution and pattern matching algorithms using AnyDSL
framework and CUDA reduces execution times up to 8 times
on most datasets.

Secondly, partial evaluation was applied for Viterbi algo-
rithm optimization [18]. It was discovered that the evaluated
version of the code outperforms the non-evaluated one by 1.5
times in some cases.

Moreover, AnyDSL team performed research [4] on the
application of partial evaluation for ray tracing purposes in
their library named Rodent. It was measured that partial
evaluation makes an improvement in execution time of around
25% on selected datasets.

Also, several other partial evaluators could be used in-
stead of AnyDSL for matrix and string algorithms code
optimization. For instance, it could be LLVM.mix, which was
successfully applied for database query optimization [19], or
C-mix [1].

VIII. FUTURE WORK

In short term, we are planning to set up the experiments on
more complex algorithms: shortest path algorithm and breadth-
first search.

Also, there is an interesting task to translate our experi-
ments’ code into a new AnyDSL frontend language named
Artic [20]. It allows parametric polymorphism, so it should be
possible to implement semirings support, which is essential
for algorithms on graphs in matrix representation.
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