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Abstract

This research study investigates the potential for efficient parallelization of the search procedure

in miniKanren, a logical programming language, within the Multicore OCaml environment.

Logical programming is a powerful paradigm that facilitates the construction of mathematical

relations between arguments and results, providing concise executable specifications for a wide

range of interesting problems. The search for solutions is a critical component of logical

programming, and leveraging parallelism offers an opportunity to expedite this process. By

examining the susceptibility of miniKanren to parallelization, this study contributes to the

ongoing research on parallelizing prominent logical programming languages such as Prolog,

Datalog, and Answer Set Programming. The findings of this research aim to enhance our

understanding of how parallelism can be effectively utilized in logical programming, paving the

way for improved performance and scalability in practical applications
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1 Introduction

miniKanren is a minimalistic embedded logical programming language that enables the con-

struction of mathematical relations between arguments and results, allowing reversible calcu-

lations. The language is free of side effects, and its computations are based on the idea of

interleaving search [13] to ensure completeness and efficiency. Logical programming paradigm

is known for providing concise executable specifications for a wide range of interesting prob-

lems. Therefore, miniKanren is increasingly popular and has over 100 implementations for

more than 40 different languages1. With the increasing popularity of miniKanren and the

emergence of multi-core systems, there is a renewed interest in exploring parallelism for logical

programming languages.

The search for answers is a crucial aspect of any relational or logical programming language.

Various research studies have focused on accelerating the search for solutions in logical pro-

gramming languages using parallelism. ”Parallel Logic Programming: A Sequel” [5] provides

a comprehensive overview of research conducted in parallel logic programming since 2000. It

discusses advancements driven by technological innovations like multi-core processors, GPUs,

cloud computing, and big data frameworks. The article mentions successful attempts to intro-

duce parallelism into the search procedure of different logical programming languages. While

the paper offers theoretical foundations, our investigation aims to adapt these ideas to the

unique features of miniKanren.

While miniKanren has over 100 implementations in 40 different languages, previous attempts to

parallelize miniKanren using tools like Domainslib and Racket’s futures library faced challenges.

For instance, the implementation using Domainslib lacked support for laziness and struggled

with deep recursive calls.

The goal of this research project is investigating the effectiveness of search parallelization and

identifying heuristics in which parallelism speeds up the search best through the Multicore

OCaml environment.

1http://minikanren.org/
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2 Statement and Motivation of Research

This section will present a description of the miniKanren language, including its syntax and a

procedure for searching for answers, and an overview of the OCaml environment in which we

intend to parallelize the search. It will also give an overview of previous work on the search

procedure parallelization in the broad context of logic programming.

2.1 miniKanren programming language

The prerequisite for the miniKanren language was the work demonstrating how standard search

primitives from logic programming can be implemented as a monad in a functional language

[13]. This implementation resulted in a simple embeddable language that is convenient for

programming in the ”programs as relations” paradigm, allowing for elegant solutions to enu-

merative problems.

miniKanren has been successfully applied to nontrivial problems such as the generation of

quinets [6], synthesis of function code by given values [3], an automatic search for proofs of

theorems [17]. Some of these applications have required extending the language with new

features, such as support for nominal terms [7] and disequality constraints [1], and program

execution optimizations, such as delaying the execution of some goals [12] and using special

data structures to eliminate loops [2]. These developments have led to a wide variety of

versions of the language available today.

2.1.1 Basic syntax

Figure 1: Syntax of miniKanren
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Data

miniKanren programming language represents all data as terms (T in Fig. 1) with construc-

tors from a set of given constructors C and variables. As an example of constructors in Fig.

1, Nil with arity 0 and Cons with arity 2 are constructors for the list type. Constructors can

contain two types of variables: syntactic variables X and logical variables A. Terms that do

not contain any variables are called constant terms. Constant terms are denoted by the set

D.

Goals

In miniKanren, the main syntactic category in the program is goal (G). A goal defines some

relation, i.e. sets of constant terms to be substituted for logical variables in the goal to execute

it.

• Unification (≡) of two terms is the basic form of goal, which requires the two terms to

become identical by substituting values for logical variables (and there will be no more

syntactic variables in them, for them there will always be something substituted earlier).

• Goals can be combined using conjunctions (∧, AND) and disjunctions (∨, OR). They

consist of two goals. Conjunctions require both goals to be satisfied, while disjunctions

require at least one of the goals to be satisfied.

• The language also includes an operator fresh for introducing a ”fresh” logical variable

that does not occur anywhere in the program, which is used as an existential quantifier.

Figure 1 is shown as a f resh keyword with new logical variable x and after the dot the

goal in which we can use this variable.

• Language supports calling a relation defined in a program by specifying its name (from

the set of relation names R) and the terms to be substituted as arguments to this relation.

In the Fig. 1 relation with name r has k arguments t1, . . . , tk

Program

A program in miniKanren consists of a sequence of named relations definitions (their bodies

must be given by the goal) and a main goal-query. At the same time, syntactic variables in

the program must be related by the fresh operator or be arguments of a given relation, and

the bodies of relations cannot contain logical variables. Logical variables can only occur in the

goal-query and the suitable values we are searching for.
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2.1.2 Search of answers

Figure 2: Substitution procedure

The substitution is a final mapping from logical variables into terms that include only logical

variables. In Fig. 2 the substitution procedure of a term for a syntactic variable in goals is

shown.

The design of each goal sets the procedure for finding solutions. The search state consists of

a substitution, specifying the accumulated information about the values of logical variables at

the moment, and an index following the maximum used for logical variables at the moment

(so that as fresh logical variables, we can take variables with an index greater than or equal

to this one). Each goal turns an arbitrary initial state into a lazily calculated stream of states

corresponding to solutions for this goal. For each type of goal, this transformation happens

this way:

• To unify t1 ≡ t2, an algorithm for unifying terms is performed in the context of the

current substitution and, if successful, the current substitution is combined with the

largest common unifier. If the terms are not unified, an empty stream is returned,

otherwise, a stream of one updated state.

• For the disjunction g1∨g2, both goals are applied to the initial state, and the resulting

streams are mixed. In this case, the calculation steps are performed alternately in the

first, then in the second goal, so the answers are with interleaving in the result. This

feature sets the search with interleaving.

• For the conjunction g1∧g2, the first goal is applied to the initial state, the second goal

is applied to each state from the received stream and the received streams are mixed

(also with interleaving).
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• For the operator f reshx.g a logical variable with an index from the state is substituted

into the goal g for the variable x, and this index itself is updated, after which the internal

goal is applied to the updated state.

• To call the function rk(t1, ..., tk), the arguments are inserted into the function body, and

the resulting goal is applied to the state.

For a given goal-query after its application to the initial state (with an empty substitution),

we will get a stream of answers in which there will be final substitutions. Their application

to logical variables from goal-query will give the value of this variable in this solution. In this

case, the final value of the variable from the query may contain logical variables that are not

connected by substitution (including this variable itself may not be connected by substitution).

This will mean that the solution is all significations in which arbitrary constant terms are

substituted for non-substitutional logical variables. Thus, each answer can set a variety of

suitable meanings.

This small set of constructions in the language allows you to specify any computable function

as a relation, while functions written in some functional language can be transformed into

such relations in a simple regular way. An important difference in the definition from the

corresponding functions in a functional language is that the relations have one more argument.

This last argument corresponds to the result of a function in a functional language. The

presence of the result in the list of arguments allows us to call the function not only “in

the direct direction” (pass constant arguments and search for the result), but also in a more

interesting way, for example, requiring any matching argument and result or all possible relevant

arguments based on the result.

2.1.3 miniKanren implementations

For this study, we used two implementations of the miniKanren interpreter - unicanren and

minikanren-ocaml. Both versions are written in the OCaml language but differ in their imple-

mentation method.

• Unicanren2 is an implementation of the Core miniKanren using the State Monad, claim-

ing to have interleaving and lazy state stream properties. Laziness was ensured through

the use of the Lazy module from the OCaml standard library. However, during ex-

periments on goals with an infinite number of solutions, the laziness property was not

2https://github.com/Kakadu/unicanren
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observed, making it impossible to conduct certain experiments. Nevertheless, important

results were obtained on finite examples, which will be discussed later.

• miniKanren-ocaml3 is an extended implementation of the Core miniKanren with addi-

tional constraint operators. In this implementation, unlike unicanren, operations with

numbers are also supported, which allows expanding the list of tasks for experiments.

miniKanren-ocaml also has interleaving and laziness properties. This is implemented

through delayed computations that await a unit argument and are wrapped in a special

constructor. As the required answers are needed, the necessary unit argument is passed

to all delayed computations. All declared properties were tested by us using experiments

on goals with an infinite number of solutions.

Since there is no state monad here, states are returned by each function and propagated

throughout the computation. This is important for correctly parallelizing the disjunction,

which will be discussed later.

2.2 Parallelism and Concurrency

Parallelism is the simultaneous execution of several computations, primarily through the use

of several cores on a multicore machine [16].

A process is an executable program. A process contains system resources associated with it - its

memory, open files, open network connections, and other similar system resources. A thread is

the part of a process that corresponds to an execution thread. Multithreaded programs consist

of several threads within a single process. They have a very fast process of communication

between threads (although slower than memory accesses from a sequential program).

Concurrency refers to the capability of various sections or components of a program, algo-

rithm, or problem to be executed in a non-sequential or partially ordered manner, while still

producing the desired outcome.

Although concurrent computing is considered to include parallel computing, there are sig-

nificant differences. Parallel computing uses more than one processing core because all the

control threads run simultaneously and occupy the entire runtime cycle of the core - which is

why parallel computing is not possible on a single-core computer. This is where they differ

from concurrent computing, which focuses on the interleaving of computation lifecycles. For

3https://github.com/manshengyang/minikanren-ocaml
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example, the execution steps of a process can be divided into time slots, and if the process

does not complete by the end of the slots, it is suspended, giving another process a chance

to work. The main advantage of this approach is the maximum possible use of the system

resources.

Parallelization on multicore processors allows to accelerate of computationally intensive pro-

grams, concurrency tools simplify writing programs with threads that actively interact with

each other and with other programs.

2.3 Multicore Ocaml

OCaml is a functional, statically-typed programming language from the ML family. Ocaml is

widely used in industry and academia.

Algebraic effects

Algebraic effects are a programming language construct that allows the programmer to define

and use effects in a composable and modular way. An effect is a computation that can

perform some action outside of its context. Algebraic effect handlers are a modular foundation

for effectful programming, which separates the operations available to effectful programs from

their concrete implementations as handler [4]. For example, reading from a file or performing

network I/O are examples of effects. With algebraic effects, the programmer can define new

effects and specify how they should be handled in a separate part of the program.

Multicore Ocaml

Multicore OCaml is an extension of the OCaml programming language that adds native support

for shared-memory parallelism [11]. It extends OCaml with the ability to declare user-defined

effects with the help of the ‘effect‘ keyword. With Multicore OCaml, developers can write

parallel and concurrent programs using a simple and familiar programming model. Multicore

OCaml is a collaborative effort between OCaml Labs at the University of Cambridge and Jane

Street, a quantitative trading firm. Multicore OCaml extends OCaml with the ability to declare

user-defined effects.

Effect handlers

Effect handlers are a key feature of Multicore OCaml. Effect handlers provide a modular and
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composable way to define and use effects in a program. With effect handlers, the programmer

can define new effects and specify how they should be handled in a separate part of the pro-

gram [19]. Multicore OCaml incorporates effect handlers as the primary means of expressing

concurrency in the language. The modular nature of effect handlers allows the concurrent

program to abstract over different scheduling strategies. Moreover, effect handlers allow con-

current programs to be written in direct style retaining the simplicity of sequential code as

opposed to callback-oriented style [4].

Domains

Domains are the units of parallelism in OCaml. Domains are heavy-weight entities. Each

domain maps 1:1 to an operating system thread and has its runtime state, which includes

domain-local structures for allocating memory. Hence, they are relatively expensive to cre-

ate and tear down4. They are implemented using a work-stealing scheduler that distributes

work across all available cores in a way that maximizes throughput and minimizes contention.

Domains can be created and destroyed dynamically, allowing the programmer to adapt the

parallelism of the program to the workload.

EIO library

Next, we will present the use of a library based on Multicore Ocaml, which is called EIO

(Effects-Based Parallel IO for OCaml). It provides the ability to work with concurrent data

structures and tools that provide parallelism, such as the Domains manager module.

Some concurrent instruments from the EIO library used in this work:

1. Fibers. Multicore OCaml supports lightweight concurrency through language-level threads

implemented using runtime support for heap-allocated, dynamically resized, stack seg-

ments – fibers [20].

Fibers are created and scheduled using effects. The continuations can be passed between

domains allowing for complex schedulers to be constructed on top of the multicore

runtime [16].

2. Eio.Streams is a bounded queue. Reading from an empty stream waits until an item is

available. Writing to a full stream waits for space. Streams are thread-safe and can be

used to communicate between domains.

4https://v2.ocaml.org/manual/parallelism.html
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3. Eio.Promise is a simple and reliable way to communicate between fibers. One fiber

can wait for a promise and another can resolve it. A promise is initially ”unresolved”,

and can only be resolved once. Awaiting a promise that is already resolved immediately

returns the resolved value.

Promises are one of the easiest tools to use safely: it doesn’t matter whether you wait on

a promise before or after it is resolved, and multiple fibers can wait for the same promise

and will get the same result. Promises are thread-safe; you can wait for a promise in one

domain and resolve it in another.

This is an example of multicore support in the EIO library. Let us say, we have a CPU-intensive

task intensive task(). Domain manager module can be used to run this in separate domains

with the help of the Fiber module:

1 let main ~domain_mgr =

2 let test () =

3 (Eio.Domain_manager.run domain_mgr (fun () -> intensive_task ()))

4 in

5 Fiber.both

6 (fun () -> test ()))

7 (fun () -> test ()))

Here test() runs a domain with an intensive task. Further, the Fiber module is used to make

concurrent computations ( f un() → test()) in two different fibers. It is necessary because the

run method waits until the domain with intensive task finishes. While both intensive tasks are

in different fibers, their run methods will wait only in their fiber. With a combination of these

two instruments, Domain Manager and Fiber, we can achieve real parallelism.

Due to the specificity of interpreter implementation, there are no non-threadsafe values passed

to functions, so we can freely use these instruments. It is important because the type system

cannot check that function passed to run does not affect any non-threadsafe values.

Domainslib library

The Domainslib library offers support for nested-parallel programming through several features.

One of these is the async/await mechanism, which enables users to spawn parallel tasks and

awaits their results. Additionally, Domainslib provides parallel iteration functions built on top

of this mechanism. The library employs an efficient implementation of a work-stealing queue,

allowing for the efficient sharing of tasks across domains. Domainslib is based not on effects,
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but on domains. Still, it’s possible to combine Domainslib parallelization tools with Effect

Handlers.

The primary benefit of the library for our investigation is its integrated multitasking manager

and the capability to specify the number of threads. By placing tasks into the task pool, they

will be executed as threads become available. This simplifies the management of numerous

tasks and allows for optimal task execution.

2.4 Related works

There are various research projects and articles devoted to accelerating the search for solutions

in logical programming languages using parallelism. One of the most significant theoretical

articles is ”Parallel Logic Programming: A Sequel” [5]. This article serves as the foundation

for all our theoretical arguments concerning the implementation aspect. It provides a compre-

hensive overview of research conducted in parallel logic programming since 2000. The authors

of the article highlight the advancements in parallel logic programming over the years, driven

by technological innovations such as multi-core processors, GPUs, cloud computing, and big

data frameworks.

Implicit parallelism

Our research primarily focuses on the implicit exploitation of parallelism without user inter-

vention, i.e. the system itself will be configured for certain parameters for parallelism, and no

input data from the user is required. Nevertheless, several approaches are presented in the lit-

erature that introduces extensions of the logic programming language with explicit constructs

to describe parallelism.

OR Parallelism

The article describes OR-parallelism with the theoretical foundations of the effectiveness of

parallel search. Most importantly, the article mentions the practical problems of the approach

of simply running OR-tree branches in various threads. Despite the fact that the branches of

the OR-tree are independent, there is a problem with the use of shared data by branches. The

authors of the article mention several practical ways to solve this problem, some of which we

use in this paper.

AND Parallelism
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And-parallelism presents a challenge in implementation due to its concurrent nature and the

need to effectively handle both independent and dependent subgoals. Independent And-

parallelism allows subgoals to be executed in parallel without competing for variable bindings,

improving performance by leveraging divide-and-conquer algorithms. However, implementing

independent And-parallel systems involves addressing issues such as distributed backtracking,

runtime identification of independent subgoals, and the definition of various notions of inde-

pendence. Current state-of-the-art systems, such as ACE [8], BEAM [14], and DDAS [18],

demonstrate effectiveness in handling dependent And-parallelism, but their complexity poses

challenges. There is another theoretical article [10] about AND-parallelism, which presents a

simple model of independent and-parallel execution and discusses the correctness and efficiency

aspect of this model.

Unification Parallelism

Unification is a fundamental operation in logic programming languages, but its parallel process-

ing has not been extensively explored due to the small number of arguments and the need for

consistency checks after parallel unification. Due to the limited research focus on unification

parallelism in parallel logic programming, we will not delve into it further.

Results and approaches in parallelization of logic programming languages

• Parallel execution of Prolog

Prolog is a logic programming language based on a formal system known as first-order

logic. The article reviews progress in execution models for Or-parallelism, which involves

the parallel execution of independent branches of the search space, and And-parallelism,

which focuses on the concurrent execution of independent subgoals. It also discusses

static analysis techniques for exploiting parallelism and the combination of parallelism

with tabling in Prolog systems.

• Parallelism in Answer Set Programming (ASP)

Answer Set Programming (ASP) is a programming paradigm for knowledge representa-

tion and reasoning. It utilizes negation as failure and stable models (answer sets) to

compute the semantics of a program. Various forms of parallelism have been imple-

mented in modern ASP solvers and tested in ASP Competitions [15].

In the case of ASP, the concept of Or-parallelism emerged early on, where multiple
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workers concurrently explore alternatives in the search process. The last approaches

introduced centralized scheduling structures or fully decentralized worker models. Load

balancing, task sharing, and recomputation strategies have been explored to improve

parallelism and performance.

• Parallelism in Datalog

Parallelization techniques have shown significant speedups and performance improve-

ments in Datalog. Datalog is a declarative query language that is based on logic pro-

gramming and is specifically designed for querying and manipulating data stored in

databases.

In the context of Datalog, parallelization techniques borrowed from relational databases

and SQL query evaluation have been explored. Various approaches have been developed,

including parallelization of natural join operations, query optimization, and distributed

memory architectures. These approaches aim to partition program rules, distribute work

among workers, and minimize synchronization for improved performance.

Various parallel and distributed systems have been developed to evaluate Datalog and

ASP programs in different application domains, including graph analytics, program anal-

ysis, social networking, and data analytics. These systems often extend the plain Datalog

language with additional features like aggregation and negation to support specific ap-

plication needs.

• AND-parallelism in Mercury

Mercury is a logic programming language that combines features from both functional

programming and logic programming paradigms. It is designed to be a high-level and

efficient programming language for developing large-scale and reliable software systems.

One of the main goals of Mercury is to provide high-performance execution. Mercury is

designed to support the parallel execution of programs using dependent AND-parallelism,

which allows multiple subgoals to be executed concurrently.

Initially, the parallel implementation of Mercury focused on non-communicating subgoals.

However, it was later extended to support communication between subgoals. This ex-

tension involved architectural enhancements and optimizations. The system introduced

distributed local work queues and work-stealing models to address the bottleneck caused

by a centralized task queue. Additionally, a Mercury-specific cost analysis was employed
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to identify promising subgoals for parallel execution at compile time.

• Parallel execution on big data frameworks.

The article discusses the execution of logic programming in the context of big data

frameworks, such as MapReduce, and addresses the challenges and approaches for scaling

logic programs to handle massive quantities of data.

• Parallel execution on GPUs

Graphical Processing Units (GPUs) are highly parallel devices originally designed for

graphics processing but are now widely used in various computationally intensive ap-

plications. Logic programming has also explored the potential of GPUs for parallel

execution

The Yasmin solver is an example of utilizing GPU parallelism for Answer Set Program-

ming solving. It adopts a conflict-driven approach with parallelized algorithms optimized

for GPU occupancy, thread divergence, and memory throughput. ASP computations and

parallel conflict analysis procedures are employed, and memory accesses are regularized

using techniques such as sorting and Compressed Sparse Row format.

miniKanren parallelization approaches

• Unicanren

An attempt to parallelize Unicanren using tools from the Domainslib library was made in

this work 5. Mainly, the work implements the parallelization of disjunction by completely

forcing calculations in sub-goals and running them in separate ”tasks”. All the ”tasks”

are added to the pool, and as the answers arrive, they are put into the so-called Chan, a

competitive data structure from Domainslib. By default, the pool is configured to work

in 12 physical threads. After completing all the tasks, Chan should be filled with all the

answers from all the sub-goals. The answers are taken from Chan and merged into one

common answer.

The main problem of implementation, even if we do not take into account the lack

of support for laziness and honest interleaving search, is the inability to work on deep

recursive calls.

5https://github.com/K0lba/unicanren
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• pKanren

µKanren is a minimalist language in the miniKanren family of relational (logic) program-

ming languages, written in the Scheme language. pKanren6 is an attempt to parallelize

this language. The authors used threads, futures, place channels, and other Racket

language instruments for parallelism.

The main problem was the use of the Futures tool - they were launched in various

physical threads only in a few runs of experiments, which made the interpreter’s running

time unpredictable.

The academic papers mentioned earlier have contributed important ideas for developing OR-

parallelism in miniKanren. However, miniKanren has some distinct differences compared to

other programming languages, such as its interleaving search behavior and specific laziness

mechanism. As a result, we cannot directly apply the algorithms from those papers to the

miniKanren interpreter. Instead, we will describe a new algorithm that takes into account the

unique features of miniKanren and handles special situations accordingly.

6https://github.com/joshcox/pKanren
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3 Description of the Investigation

3.1 Disjunction parallelism

Our first parallelization approach is inspired by work [5], where the idea of OR-parallelism is

introduced. It is more efficient to start with the idea of parallelizing disjunction operation since

the search procedure in the miniKanren programming language is implemented according to

the interleaving principle, and disjunction clauses are independent of each other, as opposed

to the conjunction operation, where it is not possible to evaluate the second clause without

the answer which satisfies the first clause.

Let us consider a simple example of the appendo relation’s evaluation, which concatenates two

lists:

1 appendo x y xy =

2 (x == Nil and y == xy) or

3 (fresh h t ty.

4 x == Cons (h, ty) and

5 xy == Cons (h, t) and

6 appendo t y ty)

and the goal:

1 appendo x y [1,2,3]

Now we can construct OR-tree (Fig. 3), where every vertex is a clause in disjunction.

Figure 3: OR-tree of appendo x y [1,2,3] goal

Since we need to find all the solutions for x and y arguments, the evaluation goes through all

the clauses (vertices), and the bodies of these clauses can be executed in parallel to find the

four solutions to the goal-query. It is important to note that in this example, using parallelism

may not give significant benefits as the tasks are relatively small-sized and poorly balanced.
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Common ancestors problem

In theory, achieving such OR-parallelism should be straightforward, since the various branches

of the OR-tree are independent of each other and can explore alternative sequences of reso-

lution steps without requiring much communication between parallel computations. However,

implementing OR-parallelism can be challenging due to the nodes sharing in the OR-tree.

When two nodes in two different branches of the OR-tree share their least common ancestor

node, all nodes above (and including) that node are also shared between the two branches.

It means that a variable created in one ancestor node could be bound differently in the two

branches, making it necessary to organize the environments of the two branches in a way that

makes the correct bindings applicable to each branch discernible. As a result, implementing

OR-parallelism requires careful consideration of the shared nodes management way to ensure

the correct execution of parallel computations.

In the Unicanren interpreter, due to the usage of State Monad, it is solved by recording all

the conditional bindings in a global data structure and attaching a unique identifier with each

binding which identifies the branch a binding belongs to. For example, his approach has been

explored in the version vectors model [9].

In the minikanren-ocaml interpreter, there is a storage type that consists of substitutions and

constraints. As we mentioned before, since there is no usage of State Monad, storage is

returned by each function and propagated throughout the computation.

Laziness problem

The OCaml language forces computations, but it is undesirable for computations in the

miniKanren language interpreter. For example, there is a class of tasks that have an infi-

nite number of solutions, and when they are launched, the user selects the number of answers

that he needs to receive. In the case of lazy calculations, the search will stop when the required

number of responses is received. Without laziness, the computation in each domain is forced,

which is why the domain will never be able to complete. Worth mentioning, the search in most

versions of the miniKanren is implemented with a mechanism of interleaving answers from each

sub-goal, so we need to get answers from all domains evenly, without wasting time calculating

unnecessary answers. It is also impossible to ask the domain to calculate a certain number of

answers because due to such forcing, we will not be able to merge the streams for answers

from different domains with interleaving. This problem of forcing calculations does not allow
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us to run external parallelization on certain classes of tasks. Therefore, next, there will be

experiments for those classes of tasks for which it is possible to set up a similar experiment

and evaluate their effectiveness of them. Later, we will implement with support for laziness

and forcing in places where we need to interleave answer streams.

3.2 Parallelism in Unicanren

3.2.1 External parallelization

Before changing the Unicanren interpreter and finding heuristics for efficient parallelization,

it is necessary to conduct experiments on basic examples and determine the effectiveness

of running on multiple domains. To do this, we chose the external parallelization method:

several goals are launched in different domains, after which, by using monadic structures from

the interpreter, the answers streams merge, and we get an answer as if the launched goals

were clauses in one main OR goal.

External parallelization algorithm:Run main domain using standard Eio environment

Define sub-goals Define the environment (logical variables, relations) For each goal spawn

new domains using Eio.Domains manager module and run externally forced evaluation

Merge the answer streams by interleaving from each calculated goal in pairs to present

an answer as a result of one main OR-goal

Taking into account all the conditions of our basic implementation of the miniKanren inter-

preter, we can use tools for parallelization in the Multicore OCaml environment. Since there is

already existed project of parallelization Unicanren using Domainslib, in our research the EIO

library (Effects-Based Parallel IO for OCaml) was chosen for parallelization, specifically, the

Domain manager module, which provides the creation of separate domains, and Eio.Stream for

communication between domains. Other tools from the Multicore OCaml environment (Fibers,

Promise, Async/Await) were also tried, but during the experiments, it turned out that their

pure use does not give the effect of parallelism: they effectively cope with asynchronous work,

but without an external tool for creating domains/threads, they cannot provide parallelism.

Experiments on CPU intensive tasks

Table 4 shows the data obtained when running two identical reverso relationships in an external

parallelization way for lists of different lengths. The main goal is:

1 (reverso lst x) or (reverso lst x)
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and the lst is a list of symbols ’a’ with a certain length. As a result of calculating this goal,

two identical answers equal to lst are expected. Here we used a version of reverso relation,

which internally calls appendo relation:

1 reverso x y =

2 x == Nil and y == Nil or

3 fresh h tmp tl.

4 x == Cons(h, tl) and

5 reverso tl tmp and

6 appendo tmp Cons(h, Nil) y

The used version of the reverso relation is quite a CPU-intensive task. In the table, you can

see that it takes more than a minute to turn over a list of length 1024. All experiments were

run on an 8-core processor with 16 GB of RAM. On a list of length 1300, it was not possible

to count the answers in a non-parallel run due to excessive load on the computer at the 196th

second. However, the parallel version managed to be calculated in 105 seconds and gave an

improvement in time by at least 46%.

1.2.3.4.5.

Lists length Parallel, sec Non-Parallel, sec

512 37.36% 5.41 8.64

900 13.42% 35.82 41.37

1024 31.03% 51.73 75.00

1200 43.46% 80.20 141.84

1300 > 46.40% 105.48 > 196

Table 1: Results of running OR of two ’reverso list x’ subgoals

The next table 5 shows key results of running in 2 domains with similar appendo sub-goals

(each appends one list to another, lists have the same length shown in the first column of the

table) in an external parallelization way. If there is no noticeable improvement in time on the

lists with 4096 elements, since it is about one second, and it can be interpreted as a deviation

from launch to launch, then on lists with a length of more than 8000, an improvement of

about 30% is a good result.
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Lists length Parallel, sec Non-Parallel, sec

4096 32.04% 3.01 4.43

8192 33.55% 13.64 20.52

16384 35.30% 72.74 112.43

Table 2: Key results of running OR of two ’appendo list1 list2 x’ sub-goals

It is important to note that the calculations in the given experiments were balanced across

domains since the branches of the OR-tree are identical, and, most likely, these may be the

most effective results.

Other interesting results were obtained by launching 10 appendo relations with external par-

allelization, shown in Table 3. There is no improvement in time up to 7000-length lists.

Intuitively, it seems that parallelizing 10 tasks at once should be much more efficient than

parallelizing 2 tasks, but the results show the opposite. This may be related to how the stream

of states merging works – the tools in the miniKanren language interpreter allow us to merge

streams in pairs. In this experiment, the streams merged in pairs, forming a binary tree, while in

the sequential version, this merge was implemented by sequential folding of the list of subgoals

state streams.

Lists length Parallel, sec Non-Parallel, sec

6000 0.11% 58.20 58.26

7000 14.08% 77.55 90.25

8000 25.26% 102.23 136.77

Table 3: Key results of running 10 ’appendo list1 list2 x’

As for the experiments in the most poorly balanced case (one of the two branches in the

binary OR-tree ends with a simple calculation like the unification of the empty list), then such

parallelism in Unicanren slows down the calculation by a few seconds.

3.2.2 Internal parallelization

Baseline

First of all, to make the disjunction operator parallel directly in the interpreter, it is necessary

to ensure the acceleration of calculations. Before that, in external parallelization, we did not

care about forcing calculations, because the external launch of individual goals already forces
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these calculations by itself. When we start working with the internal disjunction operator, we

do not have the tools to force the calculations, because it is provided by the external launch

of the search for solutions. After all, the number of expected answers will be known at this

stage.

When forcing calculations, the optimal way will be to collect answers in some data structure,

in which you can put answers from different streams, and then get and merge the answers.

This is convenient because in the future when we improve forcing, we will be able to maintain

laziness and not wait for threads to complete all calculations. The structure from the Eio

library that we will use for this purpose is called Eio.Stream, and in order not to confuse it

with the state stream, we will call this structure a queue.

In Unicanren, there are only two types of stream state: Nil, i.e. empty stream, and Cons (x,

c), where x is an answer and c is a lazy calculation of the rest of the answers. For the forcing

in the case of an empty stream, nothing needs to be done. If there is an answer x in the

stream, then we put it in the queue, and then recursively force a lazy calculation c. If there

are no responses in the queue, then we will return an empty stream of Nil states. Otherwise,

to merge, you need to get one received stream state from the queue and attach a recursive

call to the merge function using monadic plus.

In every spawned domain we need to force streams. After finishing calculations in all the

domains, the procedure of merging streams starts.

Switching version

In the course of setting up experiments on an extended class of problems, it became clear

that Unicanren does not have the declared property of laziness. Since our research focuses

on the parallelism of the answer search procedure in the minikanren family of languages, we

decided to switch to another version of minikanren, which is also written in OCaml. In the

case of fixing the mechanism of lazy calculations in Unicanren, it will be possible to apply

the algorithm developed in our study for another version of miniKanren. However, parallelism

heuristics may differ, because the representation of logical operators, the use of different ways of

storing substitutions, and the mechanism of laziness in these languages differ. Nevertheless, in

Unicanren there is a simple way to look into the conjunct and determine the type of operation,

which could be an interesting heuristic for parallelism. We hope that one day it will be possible

to investigate.
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3.3 Baseline implementation

Further in the study, we continue to explore OR-parallelism within the framework of the

minikanren-ocaml language. To parallelize this version of the minicanren, we re-use the baseline

described in the chapter about Unicanren.

As shown in the Listing. ??, we keep the structure from the previous baseline: forcing compu-

tations of subgoals in domains, putting calculated answers into a queue, and merging all the

answers.

In minikanren-ocaml, there are four types of stream states:

1. MZero – no answers in the stream. There is no need to force it.

2. Unit x – found the only answer x. There is no need to force it, but the answer must be

added to the queue.

3. Func f – lazy computation f, which is waiting () argument to run. To force it, we

recursively call the forcing function on the f() argument.

4. Choice (x, f) – answer x and lazy computation f with the rest of the answers. To force

it, we put the answer to the queue, and recursively force

After the tasks are assembled and run, all fibers are waiting for calculations. Next, the proce-

dure for merging takes place. We have reused the standard mplus from the minikanren-ocaml

interpreter with deferred computation. During the launch of the parallel disjunction, exactly as

many answers as were requested will be given. Since all threads have completed calculations

by this point, there is no need to force the merging of streams.

1 let condePar lst s =

2 let queue = Eio.Stream.create max_int in

3 let rec force_streams x =

4 match x with

5 | Choice (x, f) -> Eio.Stream.add queue x;

6 force_streams (f ());

7 | Unit x -> Eio.Stream.add queue x;

8 | Func f -> force_streams (f())

9 | MZero -> ()

10 in

11 let make_par_task f ~domain_mgr =

12 Eio.Domain_manager.run domain_mgr (fun () ->

13 force_streams (f s))
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14 in

15 let make_task_list l =

16 Eio_main.run @@ fun env ->

17 let rec iter_tasks l =

18 match l with

19 | hd :: tl -> Eio.Fiber.both

20 (fun () ->

21 make_par_task ~domain_mgr :(Eio.Stdenv.domain_mgr env) hd)

22 (fun () -> iter_tasks tl)

23 | [] -> ()

24 in iter_tasks l

25 in

26 make_task_list (List.map all lst);

27

28 let rec merge_streams queue =

29 match Eio.Stream.take_nonblocking queue with

30 | Some x -> mplus (Unit x) (fun () -> merge_streams queue)

31 | None -> MZero

32 in

33 merge_streams queue

Listing 1: Baseline of minikanren-ocaml parallelization

Domainslib

We have also attempted to make a similar implementation using data structures from the

Domainslib library. In comparison with the current baseline based on the Eio library, the

implementation showed worse results on simple experiments with a balanced OR tree. Besides,

not every answer where computed. The main problem was the launch of a large number of

domains, in which case the implementation was completed with an error and the answers were

not counted. In the current implementation based on the Eio library, these problems were

avoided, which will be shown in the experiments below.

3.4 Experiments

The computing speed in minikanren-ocaml differs from the computing speed of Unicanren, and

the baseline had some fixes, so we again experimented with CPU-intensive tasks. In addition,

it is important to note that the time error from launch to launch of the same task can be up

to 1 second. For this reason, experiments on tasks running for less than 1 second will not be
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mentioned in the presented data.

Parallelization of two branches

Excellent results were obtained during the launch of the task ”disjunction of two similar reverso

tasks”. This task is perfectly balanced since both branches are identical. Table 4 shows that

the parallelism was almost perfect: there is an improvement in speed of about 50%.

List length Parallel, sec Non-Parallel, sec

100 46.67% 8 15

125 45.95% 20 37

150 50.00% 38 76

175 50.00% 70 140

200 50.21% 119 239

215 50.78% 158 321

Table 4: Disjunction of two ”reverso [’a’,..,’a’] q” subgoals

There was also a significant improvement when running the disjunction of two appendo tasks.

Again, this goal is well balanced and managed to get almost perfect parallelism, as shown in

Table 5.

Lists length Parallel, sec Non-Parallel, sec

950 50.00% 8 16

1350 51.06% 23 47

1650 51.16% 42 86

1950 50.36% 69 139

2350 49.59% 123 244

Table 5: Disjunction of two ”appendo [’a’,..,’a’] [’b’,..,’b’] q” subgoals

Parallelization of 10 branches

More interesting results were obtained during the launch of the disjunction with ten branches.

Tables 6 and 7 show that running a large number of branches in parallel gives an improvement

of up to 80%. These results could not be obtained during experiments on Unicanren, where

the results deteriorated relative to experiments with only two branches. These significant im-
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provements provide grounds for investigating the heuristics of parallelization of a large number

of branches at the same level at once.

Lists length Parallel, sec Non-Parallel, sec

50 80.00% 1 5

70 73.68% 5 19

100 72.73% 21 77

125 73.63% 48 182

150 75.33% 93 377

Table 6: Disjunction of 10 ”reverso [’a’,..,’a’] q” subgoals

Lists length Parallel, sec Non-Parallel, sec

550 75.00% 4 16

1000 75.79% 23 95

1300 77.51% 47 209

1500 78.57% 69 322

Table 7: Disjunction of 10 ”appendo [’a’,..,’a’] [’b’,..,’b’] q” subgoals

Losses on small tasks

We set up experiments on quickly solved tasks (up to 16 seconds), and no significant loss

in performance of the parallel version in comparison with the sequential one was revealed. It

also applies to experiments on highly unbalanced OR-trees. Such results are pleasing because

creating threads can be a cheap operation in this implementation and they do not spoil the

performance of the interpreter. With this property, it will be much easier to pick up heuristics,

since they will not have a strong requirement to identify and run only CPU-intensive tasks.

Infeasible Simultaneous Execution

A potential problem in such implementation may arise when generating too many domains,

more than can be executed simultaneously. When we used the Domainslib library in an at-

tempt to add parallelism to minikanren-ocaml, we encountered a similar problem. To test the

interpreter behavior in this case, we set up experiments with a large amount of CPU-intensive

tasks. The tables show the results of performing 50 (Table 8) and 100 (Table 9) reverso

tasks on lists of lengths 50 and 100. On such tasks we have got not only a version that can
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withstand a large number of intensive tasks, but a significant speed improvement – in these

experiments, an average acceleration is 75%. Unfortunately, we also found a test, on which

domains spawning failed, and the program ended with an error. It can be corrected by adding

error handling (if it is impossible to start a new domain, just run it sequentially). Another

approach, perhaps partially solving the problem, is to add heuristics that would balance the

start of threads so that the system does not overload and there is still an improvement in time.

Lists length Parallel, sec Non-Parallel, sec

50 74.07% 7 27

100 76.62% 90 385

Table 8: Disjunction of 50 ”reverso [’a’,..,’a’] q” subgoals

Lists length Parallel, sec Non-Parallel, sec

50 73.08% 14 52

100 77.40% 179 792

Table 9: Disjunction of 100 ”reverso [’a’,..,’a’] q” subgoals

3.5 Extended implementation

Laziness

Laziness support is a significant aspect of languages from the miniKanren family. To maintain

laziness, first of all, it is necessary, to see directly in the disjunction how many answers you need

to get or when to finish all the continuations. Secondly, we need to implement a mechanism

for interrupting further calculations when the required number of responses has already been

collected. Additionally, with the nesting of disjunctions, there must be a coordinated work of

all disjunctions at once, so that it is clear when each of them ends.

In the first case, this can be done by stretching the number of requested responses from the

external triggering function (taken or run()) directly into the disjunction. To do this, the

disjunction must be an argument of a special type, either stretch this value through all logical

operations or add this value to the storage, since it is passed through all functions. The

procedure of aborting domain calculations mostly depends on the tools used for parallelism.

For the nested disjunctions, creating one common queue in the top disjunction operation could

be done. As soon as the queue is filled with the required number of answers, domains will be
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aborted. This should still give an acceleration in work, perhaps not as strong as full forcing

on certain classes of tasks. At the same time, this will give a significant acceleration on tasks

where a small subset of answers is needed, since you will not need to wait for the rest of the

calculations. This property is a priority and therefore the focus of further research will be

directed to achieving laziness.

In addition, the forcing mechanism could be modified: domains will calculate goals only before

the first response, and deferred calculation will start later when another response is needed.

3.5.1 Heurisitics

Heuristics can be a great tool to improve performance and reduce the load on the domain

manager. There are several ideas on which conditions we decide the OR-goal branch of the

tree to be calculated into a separate domain: based on the depth in the tree, based on the

type of clause (unification, conjunction, fresh, another disjunction), the order in the clause list

of the current OR-goal, random parallelization.

Random parallelization After encountering the domain manager overload problem, at-

tempts were made to implement selective parallelism. For example, to run parallelism only

in one of several branches. This was ensured either through strict counting of the k-th branch

or through a random coin toss. Experiments were launched on a disjunction of 100 reverso

with a length of 100 with parallel branches. It was possible to achieve correct operation and

an average improvement of 50% compared to the fully sequential version.

In comparison with full parallelization in ordinary tasks, it copes slower, but in absolute values,

it is still a significant result. In the case of setting the implicit version of parallelism in

the interpreter, then some significant deterioration in time should not occur. Usually, on

medium-balanced tasks and well-balanced tasks, the improvement will be quite large. On

poorly balanced tasks, which at the same time do not overload the domain manager, the

deterioration will be observed within the constant value, which may be within the margin

of error. On some of the tasks that heavily overload the domain manager, there will be a

significant improvement in time.

However, in the case of explicit parallelism in the interpreter, it will be more convenient for

the user to independently arrange parallel disjunctions in the code so as not to overload the

domain manager, and at the same time, heuristics will not be needed. The user sees that
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some branches of disjunction are simple unifications, so it makes no sense to waste time and

resources on running them in separate threads. Then everything that is specified as parallel will

run in separate domains, not just selective branches. Full parallelization without heuristics will

make it possible to get the greatest acceleration of the program. This is not even a question

of balancing tasks, but rather a question of overloading the domain manager. If a task is

unbalanced and does not spawn too many domains, we will not lose performance, as indicated

above.
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4 Evaluation of the Investigation

The baseline implementation of minikanren-ocaml parallelization using the Eio library shows

promising results. It effectively forces computations, puts answers into a queue, and merges

them. It demonstrates good performance on CPU-intensive tasks and shows speed improve-

ments compared to the non-parallel version.

Attempts to use the Domainslib library for the implementation encountered issues and showed

worse results compared to the Eio library. The Eio library-based implementation avoids prob-

lems and provides better performance.

Experiments were focused on testing the performance of parallelization on different tasks. The

first set of experiments involved the parallelization of two branches in a disjunction. Two

types of tasks were considered: ”reverso” and ”appendo”. In both cases, the tasks were

well-balanced, with identical branches. The results showed almost perfect parallelism, with an

improvement in speed of about 50%. For example, in the ”reverso” task with a list length

of 200, the parallel version took 119 seconds compared to 239 seconds for the non-parallel

version.

The next set of experiments involved the parallelization of 10 branches in a disjunction. Again,

the tasks were ”reverso” and ”appendo”. The results demonstrated significant performance

improvements, with speedup ranging from 73.68% to 80%. For instance, in the ”appendo”

task with a list length of 1500, the parallel version took 69 seconds compared to 322 seconds

for the non-parallel version.

The experiments also investigated the performance of small tasks and highly unbalanced OR-

trees. The results indicated that the parallel version did not suffer significant losses in perfor-

mance compared to the sequential version in these scenarios. This is advantageous as it allows

the interpreter to create threads without significantly impacting performance, making it easier

to implement heuristics without strong requirements for identifying CPU-intensive tasks.

However, it should be noted that the experiments revealed a potential issue when generating a

very large number of domains that exceeds the system’s capacity for simultaneous execution.

In some cases, the interpreter encountered errors and failed to count all the answers. This

problem could be addressed by adding error handling and implementing heuristics to balance

the starting of threads to prevent system overload. On the test data, we managed to avoid

such an error using the heuristic of randomly selecting branches for parallelization.
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The experiments also touched on the topic of laziness support in the minikanren-ocaml par-

allelization. Maintaining laziness is important for languages in the miniKanren family, and

further research will focus on achieving laziness by incorporating interruption mechanisms and

coordinated work of nested disjunctions.

In addition to the experiments conducted on the minikanren-ocaml interpreter, similar efforts

were made to implement parallelization in the Unicanren interpreter. The goal of paralleliz-

ing Unicanren was to explore the potential performance gains through the parallel execution

of disjunctive goals. Experiments on the Unicanren parallelization revealed some interesting

findings. Initially, the experiments focused on parallelizing two branches in a disjunction, sim-

ilar to the experiments conducted on the minikanren-ocaml interpreter. However, unlike the

minikanren-ocaml implementation, the performance of the Unicanren parallelization deterio-

rated as the number of branches increased. This suggests that the parallelization strategy used

in Unicanren may not be as effective in achieving performance improvements compared to the

minikanren-ocaml implementation. The experiments also revealed problems related to resource

allocation and load balancing when parallelizing Unicanren. In certain scenarios, the uneven

distribution of workload between domains and the overhead associated with the creation of

domains and their coordination reduced overall performance. These issues point to the need

for further research and optimization to improve the parallel execution strategy in Unicanren.

In conclusion, the experiments demonstrated the effectiveness of parallelization in the minikanren-

ocaml interpreter using the Eio library. Significant performance improvements were observed,

especially when parallelizing a large number of branches. The results provided a basis for

further research into heuristics and laziness support, intending to optimize parallel execution

in the context of miniKanren languages.
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5 Conclusions

The research project focused on exploring and evaluating the parallelization of the minikanren-

ocaml language. The study revealed that parallelism is a powerful tool for speeding up the

search process in minikanren. The capabilities of the Multicore OCaml language enabled

significant acceleration in the execution of tasks.

The main aspects and results of the project can be summarized as follows:

• Baseline implementation: The baseline implementation of the disjunction paralleliza-

tion approach in minikanren-ocaml was described. It involved forcing computations of

subgoals in domains, storing calculated answers in a queue, and merging the answers.

• Performance evaluation: Experiments were conducted to evaluate the performance of

the parallelization approach. The results demonstrated significant speed improvements

in CPU-intensive tasks. The parallel version achieved speed improvements of around

50% for disjunctions of two similar tasks and up to 80% for disjunctions with a larger

number of branches.

• Scalability: The parallelization approach showed scalability, with performance improve-

ments maintained even when increasing the number of branches in the disjunctions. This

scalability was a notable advantage compared to previous experiments with Unicanren.

By leveraging parallelism and the multicore capabilities of OCaml, the research project demon-

strated the potential for substantial performance improvements in minikanren-ocaml. These

findings open up avenues for future research and optimization of parallelization techniques in

the context of logic programming languages.
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