
Lama memory manager development

by

Egor Sheremetov

Bachelor Thesis in Computer Science

Submission: May 15, 2023 Supervisor: Prof. Kirill Krinkin

Constructor University | School of Computer Science and Engineering

Statutory Declaration

Family Name, Given/First Name Sheremetov, Egor
Matriculation number 30007021
Kind of thesis submitted Bachelor Thesis

English: Declaration of Authorship

I hereby declare that the thesis submitted was created and written solely by myself without
any external support. Any sources, direct or indirect, are marked as such. I am aware
of the fact that the contents of the thesis in digital form may be revised with regard to
usage of unauthorized aid as well as whether the whole or parts of it may be identified as
plagiarism. I do agree my work to be entered into a database for it to be compared with
existing sources, where it will remain in order to enable further comparisons with future
theses. This does not grant any rights of reproduction and usage, however.

This document was neither presented to any other examination board nor has it been
published.

German: Erklärung der Autorenschaft (Urheberschaft)

Ich erkläre hiermit, dass die vorliegende Arbeit ohne fremde Hilfe ausschließlich von
mir erstellt und geschrieben worden ist. Jedwede verwendeten Quellen, direkter oder
indirekter Art, sind als solche kenntlich gemacht worden. Mir ist die Tatsache bewusst,
dass der Inhalt der Thesis in digitaler Form geprüft werden kann im Hinblick darauf, ob es
sich ganz oder in Teilen um ein Plagiat handelt. Ich bin damit einverstanden, dass meine
Arbeit in einer Datenbank eingegeben werden kann, um mit bereits bestehenden Quellen
verglichen zu werden und dort auch verbleibt, um mit zukünftigen Arbeiten verglichen
werden zu können. Dies berechtigt jedoch nicht zur Verwendung oder Vervielfältigung.

Diese Arbeit wurde noch keiner anderen Prüfungsbehörde vorgelegt noch wurde sie
bisher veröffentlicht.

. .
Date, Signature

Abstract

This bachelor thesis presents the development of an efficient memory management sys-
tem for the Lama programming language. Lama, primarily used for teaching compilers to
university students, is developed by JetBrains Research. The existing automatic memory
management system in Lama exhibited inefficiencies in memory usage and object order-
ing. Additionally, the stop-the-world collection algorithm used in the previous implemen-
tation limited performance and efficiency. This thesis aims to address these challenges
and improve memory consumption efficiency while preserving object ordering.

Drawing inspiration from the article ”Reimplementing the Wheel: Teaching Compilers with
a Small Self-Contained One” by Daniil Berezun and Dmitry Boulytchev, which explores
the pedagogical aspects of teaching compiler construction, the significance of Lama as
a teaching tool for compiler education is recognized. The article highlights the impor-
tance of understanding compilers for software engineers and the complexities involved
in compiler design and construction. It emphasizes the need for a balance between
comprehensive coverage of compiler topics and the robustness of a reference compiler
implementation.

In line with the principles outlined in the article, this thesis focuses on building a complete
and efficient memory management system for the Lama language. While the primary ob-
jective is the development of the memory management system, the relevance of Lama as
a teaching tool in compiler education is acknowledged. By implementing a garbage col-
lection algorithm that addresses the inefficiencies of the previous system and preserves
object ordering, this research contributes to the advancement of memory management
techniques in programming languages, particularly in the context of the Lama language.

The research methodology involves analyzing the limitations of the existing memory man-
agement system, reviewing various garbage collection algorithms, and designing a novel
garbage collection algorithm tailored to Lama’s requirements. The implementation prior-
itizes preserving object ordering, which is essential for maintaining the integrity of other
runtime components in the Lama language. Furthermore, the efficiency of memory con-
sumption is enhanced to optimize the overall performance.

To ensure the correctness and robustness of the new garbage collector, a comprehensive
unit test suite is developed. The testing process encompasses both simplistic test cases
and larger, more realistic programs, aligning with the principles outlined in the article. By
thoroughly validating the garbage collector, this research strives to provide a reliable and
efficient memory management system for the Lama language.

iii

Contents

1 Introduction 1

2 Statement and Motivation of Research 4
2.1 Statement . 4

2.1.1 Testability . 4
2.1.2 Design . 5

2.2 Motivation . 6

3 Description of the Investigation 8
3.1 Existing GC algorithms analysis . 8
3.2 Overview of Lama object’s structure . 10

3.2.1 Lama object types . 10
3.2.2 Object header . 10

3.3 Designing the Garbage Collector Interface for Testing 11
3.4 Executing Lama Runtime Functions with Virtual Stack 12

iv

1 Introduction

Memory management plays a crucial role in programming languages and runtime en-
vironments, ensuring efficient and effective allocation and deallocation of memory re-
sources. Over the last few decades, significant advancements have been made in the
field of memory management, driven by the ever-increasing demands of modern soft-
ware systems. This introduction delves into the background of memory management,
highlighting its evolution and the challenges faced in achieving optimal memory utiliza-
tion.

The efficient management of memory resources is essential for both performance and
reliability in software systems. In early programming languages and systems, memory
management was largely manual, requiring programmers to explicitly allocate and deal-
locate memory for their data structures. This manual approach was error-prone and often
led to issues such as memory leaks and dangling references, causing stability and secu-
rity concerns.

The advent of automatic memory management brought about a paradigm shift in software
development. Automatic memory management, commonly known as garbage collection,
relieved programmers from the burden of manual memory management by automating
the process of memory allocation and deallocation. Garbage collectors employ various
algorithms and strategies to identify and reclaim memory that is no longer in use, freeing
programmers from the responsibility of explicitly releasing memory.

Over the years, researchers and practitioners have developed a multitude of garbage
collection techniques to improve memory management efficiency. Initially, simple algo-
rithms like reference counting were prevalent, which tracked the number of references to
an object and deallocated it when the count reached zero. However, reference count-
ing had limitations, such as its inability to handle cyclic references and the overhead of
maintaining reference counts.

As the complexity of software systems increased, more sophisticated garbage collection
algorithms emerged. These algorithms aimed to minimize memory overhead, reduce
pause times, and improve throughput. Some notable garbage collection techniques in-
clude mark-and-sweep, generational garbage collection, concurrent garbage collection,
and incremental garbage collection. Each technique introduced novel approaches to
memory management, addressing specific challenges encountered in different applica-
tion domains.

In recent years, there has been a growing focus on memory management in programming
languages designed for educational purposes. Teaching compilers and programming
language design has become an integral part of computer science curricula in universities
worldwide. Providing students with a comprehensive understanding of compilers involves
exposing them to memory management concepts and techniques.

This brings us to the Lama programming language, developed by JetBrains Research,
which serves as a teaching tool for compiler education. Lama has an existing automatic
memory management system; however, it suffers from inefficiencies in terms of mem-
ory usage and object ordering. Additionally, the previous garbage collection algorithm
employed a stop-the-world collection cycle running in a single thread, which limited its
sophistication and efficiency. Preserving the order of objects, an important invariant for
other runtime components in the Lama language, was also a concern in the existing

1

implementation.

Therefore, the primary goal of this thesis is to implement a more efficient and ordered
garbage collection system for the Lama programming language. By addressing the
shortcomings of the current memory management system, this research aims to improve
memory consumption efficiency while maintaining object ordering integrity. Furthermore,
the development of a comprehensive unit test suite ensures the correctness and robust-
ness of the new garbage collector.

By delving into the background and evolution of memory management, exploring various
garbage collection techniques, and addressing the specific challenges faced in the Lama
programming language, this thesis contributes to the advancement of memory manage-
ment techniques in programming languages and compiler education.

The subsequent chapters of this thesis will delve into a detailed analysis of the existing
memory management system in Lama, review relevant literature on garbage collection
algorithms, present the design and implementation of the new garbage collector, and
evaluate its performance and effectiveness. The research findings will not only bene-
fit the Lama programming language but also contribute to the broader field of memory
management in programming languages.

In summary, this thesis endeavors to enhance the memory management capabilities of
the Lama programming language, combining theoretical knowledge and practical imple-
mentation to achieve an efficient and ordered garbage collection system. By doing so, it
aims to improve the overall performance, reliability, and usability of the Lama language,
particularly in the context of compiler education for university students.

Throughout the thesis, we will explore the evolution of memory management techniques,
considering the challenges and advancements that have shaped the field. By examin-
ing the state-of-the-art garbage collection algorithms and their applicability to the Lama
language, we aim to identify the most suitable approach for improving memory utilization
and object ordering.

The implementation of a new garbage collection system involves not only designing ef-
ficient algorithms but also considering the specific requirements and constraints of the
Lama language. We will focus on preserving the order of objects, as it serves as an
important invariant for other runtime components in Lama. This necessitates careful con-
sideration of memory allocation strategies, object traversal techniques, and the handling
of cyclic references.

To ensure the accuracy and effectiveness of the developed garbage collector, a com-
prehensive testing process will be carried out. This will involve creating various tests,
ranging from simple cases to more complex real-world scenarios, to thoroughly evaluate
the performance of the memory management system. This testing approach aligns with
the principles highlighted in the article ”Reimplementing the Wheel: Teaching Compilers
with a Small Self-Contained One” by Daniil Berezun and Dmitry Boulytchev, emphasizing
the importance of comprehensive testing in compiler education.

The insights and discoveries gained from this research extend beyond the Lama pro-
gramming language. They have broader implications for memory management in dif-
ferent programming languages and compiler design. The knowledge and techniques
acquired through this thesis will empower students and developers to design more effi-
cient and reliable memory management systems across various programming languages.

2

By incorporating the concepts discussed in the aforementioned article, this research will
contribute to the ongoing advancement of memory management techniques and best
practices.

In conclusion, the primary objective of this thesis is to enhance the memory management
capabilities of the Lama programming language by implementing an optimized and well-
ordered garbage collection system. This involves exploring the historical background of
memory management, analyzing existing techniques, and addressing specific challenges
within the Lama language. Through these efforts, the aim is to improve the overall perfor-
mance and usability of the language. The outcomes of this research will not only benefit
the Lama programming language but also have a broader impact on the academic com-
munity and industry practitioners, driving advancements in memory management tech-
niques in programming languages.

3

2 Statement and Motivation of Research

2.1 Statement

The present research aims to address the inefficiencies and limitations of the existing
memory management system in the Lama programming language, developed by Jet-
Brains Research. Lama’s current automatic memory management system suffers from
deficiencies in memory usage and object ordering, which adversely affect the language’s
performance and usability. This research project aims to implement a new garbage col-
lection algorithm that not only rectifies these issues but also significantly improves testa-
bility, design, and performance of the memory management system.

2.1.1 Testability

One fundamental aspect that demands attention in the context of this research is the
enhancement of testability specifically for the developed memory management system
in Lama. The existing implementation suffered from a lack of proper unit testing, result-
ing in an unreliable and error-prone system. To address this limitation, a comprehensive
testing framework will be developed, tailored to the specific requirements and character-
istics of the implemented garbage collector. This testing framework aims to ensure the
correctness and robustness of the memory management system developed for Lama. By
establishing a systematic and standardized approach to unit testing, the performance, re-
liability, and efficiency of the garbage collector can be thoroughly evaluated. This rigorous
testing approach not only serves to detect and eliminate potential bugs and performance
bottlenecks but also provides a solid foundation for further extension and improvement of
the memory management system, as highlighted in the undertaken research.

Moreover, preserving the order of objects during the garbage collection process is of
paramount importance in terms of enhancing the performance of user code in Lama.
The previous memory management system in Lama suffered from a lack of object or-
der preservation, resulting in unpredictable object addresses and a significant impact on
the runtime behavior of the language. By implementing a garbage collection algorithm
that effectively maintains the order of objects, the new memory management system
developed as part of this research ensures that objects allocated earlier always have
lower addresses, preserving this crucial invariant for other runtime components of Lama.
This preservation of object order enables more efficient memory access, improves cache
locality, and ultimately optimizes the overall performance of user code. By effectively
addressing this issue, the undertaken research aims to provide a memory management
system in Lama that not only ensures correctness but also maximizes the performance
of user programs, directly aligning with the goals and objectives of the conducted work.

The significance of robust and predictable testing cannot be understated when it comes
to low-level software components like garbage collection, which inherently impacts the
performance and stability of the overall system. In the case of the implemented garbage
collector for Lama, the importance of thorough testing is even more pronounced, given
the complexities involved in memory management and the critical role it plays in the lan-
guage’s functionality. With the new testing framework developed as part of this research,
it becomes possible to evaluate the correctness and efficiency of the garbage collector in
a controlled and systematic manner. By simulating various scenarios and edge cases, in-
cluding object allocation, references, lifetimes, and garbage collection cycles, the testing
framework validates the behavior and performance of the memory management system.

4

This meticulous testing approach not only helps in identifying and rectifying potential bugs
and corner cases but also ensures that the system behaves as intended, ultimately con-
tributing to the development of a reliable and efficient garbage collector for the Lama
programming language.

Furthermore, testing plays a vital role in evaluating the performance and efficiency of
the garbage collector. Memory management systems, including garbage collection al-
gorithms, need to strike a delicate balance between minimizing memory consumption
and maximizing execution speed. In the context of this research, the developed testing
framework enables the measurement and analysis of different garbage collection algo-
rithms and strategies. By carefully assessing their impact on memory usage, execution
time, and other performance metrics, it becomes possible to identify potential bottlenecks,
inefficiencies, and areas for optimization. The insights gained from testing facilitate the
fine-tuning and refinement of the garbage collection algorithm, leading to improved per-
formance and efficiency in terms of memory consumption. This optimization process
directly contributes to the overall effectiveness and usability of the memory management
system developed for the Lama programming language, further enhancing the achieve-
ments and objectives of the conducted research.

2.1.2 Design

Another critical aspect of this research is the improvement of the memory management
system’s design. The current implementation suffers from strong coupling between inde-
pendent components, resulting in a lack of modularity and maintainability. To address this
issue, it is crucial to decouple runtime functions from the internal workings of the garbage
collector. Runtime functions should not have unnecessary knowledge about the garbage
collector’s internals and auxiliary information stored in object headers. By establishing
a well-defined and modular architecture, we can enhance the system’s maintainability,
facilitate future improvements, and enable better code reuse.

Furthermore, as the garbage collection algorithm may evolve and adapt over time, it
is essential to establish a universal mechanism for traversing object fields and objects
themselves. This mechanism should be flexible and extensible to accommodate potential
changes in the garbage collection algorithm. By implementing a standardized approach
to object traversal, we can avoid code duplication and ensure that modifications to the
garbage collector do not require extensive changes throughout the codebase. This de-
sign improvement will not only enhance the system’s maintainability but also promote a
more efficient and adaptable memory management system in Lama.

The research questions addressed in this project revolve around evaluating the impact of
the new garbage collection algorithm on memory consumption and performance. Specifi-
cally, we seek to determine the extent to which memory savings can be achieved through
optimized memory management techniques. Additionally, we aim to explore the feasibil-
ity of building an abstraction layer for the garbage collector, allowing for easy extensibility
and potential parallelization of collection cycles. By addressing these research ques-
tions, we can gain valuable insights into the effectiveness and efficiency of the memory
management system in Lama.

In conclusion, this research project aims to improve the memory management capabili-
ties of the Lama programming language. By implementing a more efficient and ordered
garbage collection system, the research seeks to address the existing limitations and in-

5

efficiencies in memory usage and object ordering. The project also focuses on enhancing
testability, design, and overall performance of the memory management system.

2.2 Motivation

By developing a comprehensive unit testing framework, the research project aims to en-
sure the correctness and effectiveness of the new garbage collector. Proper testing of
the memory management system will not only help identify and resolve potential bugs
but also provide a reliable foundation for future extensions and improvements. This em-
phasis on testability contributes to the overall stability and robustness of the memory
management system.

Preserving the order of objects in the garbage collection process is another key objective
of this research. The previous memory management system in Lama lacked this essential
feature, leading to unpredictable object addresses and impacting the performance of user
code. By implementing a garbage collection algorithm that maintains the order of objects,
we can optimize memory access, improve cache locality, and ultimately enhance the
execution speed of user programs. This preservation of object order ensures a more
efficient and predictable runtime behavior, benefiting the overall performance of the Lama
programming language.

Improving the design of the memory management system is crucial to overcome the is-
sues of strong coupling between independent components. The current implementation
suffers from a lack of modularity and proper separation of concerns, hindering its main-
tainability and scalability. By decoupling runtime functions from the internal workings of
the garbage collector and establishing a clear abstraction layer, we can enhance the sys-
tem’s design and promote better code organization. This design improvement enables
easier maintenance, facilitates future enhancements, and contributes to the overall sta-
bility of the memory management system.

In addition, the research project recognizes the need for a universal mechanism for
traversing object fields and objects themselves. This mechanism should provide a flex-
ible and extensible solution that accommodates potential changes in the garbage col-
lection algorithm. By implementing a standardized approach to object traversal, we can
eliminate code duplication and ensure that modifications to the garbage collector do not
introduce unnecessary complexity or impact the overall system performance. This de-
sign enhancement promotes a more maintainable and adaptable memory management
system in Lama.

Through this research project, we aim to address the gap in the existing memory manage-
ment system in Lama. The implementation of an efficient and ordered garbage collection
algorithm, along with improvements in testability and design, will contribute to the overall
performance and usability of the language. Furthermore, the findings and insights gained
from this research will have broader implications for memory management in program-
ming languages and compiler design.

The research questions to be explored include the evaluation of memory savings achieved
through optimized memory management techniques and the feasibility of building an ab-
straction layer for the garbage collector. By investigating these questions, we can assess
the impact and effectiveness of the new memory management system in Lama. Addi-
tionally, this research project aims to provide valuable knowledge and techniques that

6

empower students and developers to design more efficient and reliable memory man-
agement systems for a wide range of programming languages.

In conclusion, this research project seeks to enhance the memory management capa-
bilities of the Lama programming language by implementing an efficient and ordered
garbage collection system. By addressing the deficiencies in memory usage and ob-
ject ordering, improving testability and design, and exploring research questions related
to memory consumption and performance, we aim to contribute to the advancement of
memory management techniques in programming languages. The outcome of this re-
search will benefit both the academic community and industry practitioners, paving the
way for more efficient and reliable memory management systems.

7

3 Description of the Investigation

3.1 Existing GC algorithms analysis

The investigation section of this thesis delves into the research and evaluation of exist-
ing garbage collection (GC) algorithms to determine the most suitable approach for our
specific purpose in developing an efficient memory management system for the Lama
programming language. This section focuses on understanding the properties and char-
acteristics of different GC algorithms and their applicability to our project requirements.
In particular, we place significant emphasis on preserving the order of objects during the
garbage collection process, as it plays a crucial role in various aspects of Lama’s runtime
behavior and overall performance.

Preserving the order of objects holds paramount importance for our memory manage-
ment system. There are several reasons why this property is critical to our goals. Firstly,
it greatly influences the cache-friendliness of user code. By preserving object order,
we can enhance cache locality, reducing cache misses and improving overall execution
speed. Additionally, other runtime components within Lama rely on the invariant that the
order of objects remains unchanged after garbage collection cycles. Therefore, main-
taining this order is essential to ensure the correctness and integrity of the language’s
runtime environment.

To determine the most suitable GC algorithm for our purposes, we conducted a compre-
hensive comparison of different classical GC algorithms, including mark-sweep, copying
collector, and reference counting. Each algorithm possesses its own strengths and mer-
its, but we carefully evaluated their compatibility with our specific requirements using
various criteria.

One important criterion for comparison is the allocation overhead for a mutator thread.
The mutator thread is responsible for allocating new objects during program execution. In
this context, the mark-sweep algorithm exhibits low allocation overhead since it does not
require additional bookkeeping information during object allocation. However, it suffers
from heap fragmentation due to its inability to compact memory after garbage collection
cycles. The copying collector, on the other hand, provides efficient memory allocation
by copying live objects to a separate space, but it incurs additional costs due to object
copying and potentially disrupts the object order. Reference counting, while offering im-
mediate reclamation of objects, introduces significant overhead in terms of maintaining
reference counts for each object, impacting allocation performance.

Another criterion for comparison is the difficulty of runtime support. Some GC algorithms
require additional runtime support mechanisms, such as read and write barriers, to track
object references and ensure correct garbage collection. The mark-sweep algorithm, for
instance, relies on write barriers to track changes in object references, adding complexity
to the runtime system. In contrast, the copying collector and reference counting algo-
rithms have less demanding runtime support requirements, as they do not rely heavily on
barriers. However, the copying collector introduces the overhead of copying objects be-
tween memory spaces, while reference counting has its limitations in dealing with cyclic
references.

Heap fragmentation is also an important aspect to consider. Fragmentation refers to the
distribution of free memory blocks in the heap, which can impact memory utilization and
allocation efficiency. The mark-sweep algorithm suffers from fragmentation as it does

8

not compact memory after garbage collection, resulting in scattered free memory blocks.
The copying collector effectively eliminates fragmentation by copying live objects to a
separate memory space but may incur additional costs in terms of memory usage due
to maintaining two memory spaces. Reference counting typically does not suffer from
fragmentation, but cyclic references can lead to memory leaks if not handled properly.

Considering these criteria, the mark-compact algorithm emerged as the most favorable
choice for our memory management system. It offers a balanced trade-off by preserv-
ing object order, minimizing allocation overhead, and addressing heap fragmentation.
The mark-compact algorithm systematically scans and marks live objects, followed by a
compaction phase that eliminates fragmentation and organizes objects in a contiguous
manner, preserving their original order. This property aligns perfectly with our objective
of maintaining object order and facilitates cache-friendly execution of user code.

In the forthcoming sections of this investigation, we will delve deeper into the technical
aspects of the mark-compact algorithm, its implementation considerations, and how it
aligns with the requirements and goals of our memory management system. We will
explore the intricacies of the mark-compact algorithm, its parallel and concurrent vari-
ants, and its potential application as a collector for old objects in a generational garbage
collection scheme.

Furthermore, the investigation will examine the challenges and considerations associated
with integrating the mark-compact algorithm into the existing runtime environment of the
Lama programming language. We recognize that incorporating a new garbage collection
algorithm requires careful design and implementation to ensure compatibility with the
language’s runtime components and minimize any negative impact on performance and
memory consumption.

To facilitate a comprehensive evaluation, we will conduct experiments and simulations
to measure and analyze the performance characteristics of the mark-compact algorithm
under various scenarios and workloads. We will assess its efficiency in terms of memory
consumption, execution time, and the impact on user code performance. These eval-
uations will provide valuable insights into the suitability and effectiveness of the mark-
compact algorithm within the context of Lama’s memory management requirements.

Moreover, this investigation aims to address not only the technical aspects of selecting
and implementing a garbage collection algorithm but also the broader implications for
the Lama programming language and its users. By enhancing the memory management
system, we strive to improve the overall performance, reliability, and usability of the lan-
guage. Efficient memory management is crucial for the execution of complex programs,
resource utilization, and providing a seamless development experience for programmers
using Lama.

In conclusion, this section sets the stage for the investigation by discussing the impor-
tance of preserving object order and outlining the criteria for comparing different garbage
collection algorithms. Through a thorough evaluation of classical GC algorithms and their
alignment with our requirements, the mark-compact algorithm emerges as a promising
choice. The investigation will delve deeper into the technical details, challenges, and
performance evaluation of the mark-compact algorithm, ultimately aiming to enhance the
memory management capabilities of the Lama programming language and benefit its
users.

In the subsequent pages, we will explore the design of experiments, simulations, and

9

implementation details of the mark-compact algorithm, shedding light on its advantages
and addressing the specific challenges encountered during its integration into Lama’s run-
time environment. The investigation will provide valuable insights into the performance,
reliability, and efficiency of the memory management system, paving the way for im-
proved memory management techniques in programming languages and benefiting both
the academic and industry communities.

3.2 Overview of Lama object’s structure

3.2.1 Lama object types

In the Lama programming language, there are five fundamental types of objects: number,
S-expression, closure, string, and array.

The Number type requires no additional introduction as it represents numerical values.

S-expression is a functional way of creating structures in Lama. It consists of fields
and a name associated with it. For instance, if we want to create an S-expression
Structure with two fields storing the numbers 42 and 9, it would be represented as
follows: Structure(42, 9). Fields can be either numbers or other complex types, and in
the latter case, a reference to the actual object is stored as a field.

Closures and arrays share many similarities. The main distinction is that closures hold a
reference to the code that should be executed when the corresponding closure is invoked.
However, in general, both closures and arrays are sequences of elements. These ele-
ments can be either numbers or references to complex objects. In the case of closures,
they represent the set of objects that need to be captured.

Strings in Lama are straightforward and represent sequences of characters.

3.2.2 Object header

To ensure the correct functioning of the garbage collector, additional information associ-
ated with each allocated object needs to be stored. This information is commonly referred
to as an object’s header. The header contains vital metadata that the GC utilizes to man-
age memory effectively. Depending on the requirements and optimization goals of the
GC algorithm, the object’s header can be stored separately from the actual object or as
part of its memory layout.

Various approaches exist for storing object headers in different programming languages
and GC implementations. One common method is to include the header within the mem-
ory space allocated for the object itself. In this approach, the header is typically located at
the beginning of the object’s memory block. This design ensures that the header is easily
accessible and tightly integrated with the object’s data. Languages like C and C++ often
adopt this approach, as it allows for direct and efficient access to the object’s metadata.

Alternatively, some GC algorithms separate the object’s header from the actual object
data. In such cases, the header is stored in a separate data structure, such as a hash
table or an array, maintaining a mapping between the object and its associated metadata.
This approach offers flexibility in terms of the size and structure of the header, as it is
decoupled from the object itself. Languages like Java and C# commonly employ this
technique to support features like garbage collection, reflection, and dynamic dispatch.

10

In the pursuit of further algorithmic improvements and optimizations, it is crucial to con-
sider the placement of the object’s header. The paper titled ”A Fully Parallel LISP2 Com-
pactor with Preservation of Sliding Properties” by Xiao-Feng Li, Ligang Wang, and Chen
Yang delves into the importance of incorporating the header as part of the object header.
It provides valuable insights into the benefits and implications of this design choice, em-
phasizing the preservation of sliding properties in the context of a fully parallel LISP2
compactor.

By exploring different approaches to storing object headers in various languages and GC
implementations, we have carefully considered the trade-offs and design considerations
involved. After careful deliberation, it has been determined that for our specific garbage
collector implementation in the Lama programming language, we will adopt the approach
of storing the object’s header before the actual object data.

This decision aligns with the desire for a tightly integrated memory layout, where the
header resides at the beginning of the object’s memory block. By placing the header in
close proximity to the object, we ensure efficient access to the metadata and maintain a
cohesive structure. This design choice facilitates direct and straightforward manipulation
of the object’s metadata, enabling effective memory management and garbage collection
operations.

Although other approaches, such as storing the header separately in a dedicated data
structure, offer flexibility and decoupling of the metadata from the object data, we have
determined that the benefits of an integrated header outweigh the potential advantages
of a separate storage mechanism in our context. By storing the header before the object
data, we establish a clear and predictable memory layout that aligns with the goals and
requirements of our GC algorithm for the Lama programming language.

3.3 Designing the Garbage Collector Interface for Testing

One critical aspect of developing a reliable GC is the ability to thoroughly test its func-
tionality, performance, and correctness. In this section, we will delve into the design
considerations and strategies employed to create convenient and capable GC interface
for testing.

When designing the GC interface, we need to strike a balance between providing flexibility
for testing and maintaining the integrity of the GC’s behavior in real-world scenarios.
On one hand, we aim to create an environment where certain components, such as
the stack, can be mocked or simulated to facilitate controlled testing scenarios. This
allows us to isolate specific aspects of the GC’s functionality and evaluate its behavior
under various conditions. By mocking the stack, for instance, we can simulate different
stack configurations and test the GC’s ability to correctly identify and collect unreachable
objects.

On the other hand, it is crucial to ensure that the GC’s behavior in the test environment
closely reflects its behavior in the actual runtime environment of the Lama programming
language. Modifying the GC’s behavior too extensively for testing purposes may lead to
a disconnect between the test results and the GC’s performance in real-world scenarios.
Therefore, we strive to strike a balance where the testing environment mimics the runtime
environment as closely as possible, allowing us to evaluate the GC’s performance and
effectiveness in a representative setting.

11

To achieve these objectives, we employ various techniques and design choices. First,
we create a well-defined and standardized GC interface that separates the GC imple-
mentation from the rest of the runtime system. This interface encapsulates the essential
operations and interactions between the GC and other components of the language run-
time, such as the memory allocator and object manager. By decoupling the GC from
these components, we enable easy swapping of different GC implementations and facili-
tate testing of individual GC functionalities in isolation.

Furthermore, we introduce configurable parameters within the GC interface that enable
fine-tuning and customization of the GC behavior during testing. These parameters allow
us to control aspects such as garbage collection frequency, heap size, and collection
strategies, enabling us to explore different scenarios and evaluate the GC’s performance
under varying conditions. By providing this flexibility, we can conduct comprehensive
testing and analysis of the GC’s behavior and performance characteristics.

In addition to designing the GC interface, it is important to develop a comprehensive test-
ing framework that encompasses both unit tests and real-world program simulations. The
unit tests focus on specific functionalities and edge cases of the GC, while the program
simulations aim to replicate real-life usage scenarios and assess the GC’s performance
under practical conditions. This multi-faceted testing approach ensures that the GC is
thoroughly evaluated and validated across a range of scenarios and usage patterns.

As the GC is a critical component of the Lama programming language, the design of
the GC interface for testing requires careful consideration and attention to detail. By
balancing flexibility, maintainability, and consistency with the runtime environment, we can
develop a robust testing infrastructure that empowers us to validate the GC’s correctness,
efficiency, and scalability. Through comprehensive testing, we gain confidence in the
reliability and effectiveness of the GC, ultimately enhancing the overall performance and
usability of the Lama programming language.

3.4 Executing Lama Runtime Functions with Virtual Stack

During the development of the testing framework for the garbage collector (GC), a sig-
nificant challenge emerged in ensuring the proper emulation of the stack and the correct
execution of Lama runtime functions. The issue stemmed from the use of GC functions
alongside object allocation functions provided by the Lama runtime, such as Bstring,
Bsexp, Bclosure, and Barray. The problem arose from the fact that some values on the
stack were arbitrary data stored by the C compiler, such as callee-saved registers. In
order to accurately replicate the behavior of the actual Lama stack, it was crucial to elim-
inate any random data and ensure that all objects stored on the stack were valid Lama
objects.

To address this challenge, a virtual stack was implemented as part of the testing frame-
work. The virtual stack was designed to hold objects that were programmatically placed
onto it, allowing for precise control and emulation of the Lama stack. By utilizing the vir-
tual stack, it became possible to eliminate any unwanted random data and ensure that
the objects stored on the stack accurately represented valid Lama objects.

In addition to addressing the stack emulation issue, it was also necessary to execute
Lama runtime functions within the context of the virtual stack. This was essential for
accurately scanning and evaluating the behavior of the GC. To achieve this, a specialized
function was developed in assembly language with the following signature:

12

size t call runtime function(void *stack, void *fptr, int num args, ...)

This function accepted a pointer to the current top of the virtual stack, a pointer to the
Lama runtime function to be invoked, the number of arguments expected by the function,
and the arguments themselves using a variable argument list. The function dynamically
adjusted the program stack to use the virtual stack, executed the specified runtime func-
tion with the provided arguments pushed onto the virtual stack, and then reverted the
stack back to its normal state to ensure seamless continuation of program execution.

To illustrate the usage of the virtual stack and the execution of Lama runtime functions,
consider the following example test case:

Listing 1: Example test case using virtual stack
1 void test_simple_array_alloc(void) {

2 virt_stack* st = init_test ();

3
4 // Allocate array [BOX (1)] and push it onto the stack

5 vstack_push(

6 st ,

7 call_runtime_function(vstack_top(st), Barray , 2, BOX(1), BOX(1))

8);

9
10 const int N = 10;

11 int ids[N];

12 size_t alive = objects_snapshot(ids , N);

13 assert ((alive == 1));

14
15 cleanup_test(st);

16 }

In this test case, the virtual stack is initialized at the beginning of the test using the
init test() function, and cleaned up at the end using the cleanup test() function.
Within the test, a Lama runtime function Barray is invoked with arguments BOX(1) and
BOX(1), and the resulting array is pushed onto the virtual stack. The objects snapshot()

function captures a snapshot of the objects in the GC and stores their identifiers in the
ids array, allowing for verification of the expected number of alive objects. This exam-
ple demonstrates the integration of the virtual stack and the execution of Lama runtime
functions within the testing framework.

By enabling the execution of Lama runtime functions with the virtual stack, the testing
framework facilitates accurate evaluation and analysis of the GC’s behavior. It ensures
that the GC functions correctly and consistently interact with the Lama runtime

13

References
[1] Daniil Berezun, Dmitry Boulytchev. “Reimplementing the Wheel: Teaching Compilers

with a Small Self-Contained One”. July 2022.

[2] Richard Jones, Antony Hosking, Eliot Moss. “The Garbage Collection Handbook:
The art of automatic memory management”.

[3] Xiao-Feng Li, Ligang Wang, and Chen Yang. “A Fully Parallel LISP2 Compactor with
preservation of the Sliding Properties”. June 2014.

14

	Introduction
	Statement and Motivation of Research
	Statement
	Testability
	Design

	Motivation

	Description of the Investigation
	Existing GC algorithms analysis
	Overview of Lama object's structure
	Lama object types
	Object header

	Designing the Garbage Collector Interface for Testing
	Executing Lama Runtime Functions with Virtual Stack

