
Minikanren Visualizer

by

Vladimir Turov

Bachelor Thesis in Computer Science

Submission: May 15, 2023 Supervisor: Daniil Berezun

Constructor University | School of Computer Science and Engineering

Statutory Declaration

Family Name, Given/First Name Turov, Vladimir
Matriculation number 30006614
Kind of thesis submitted Bachelor Thesis

English: Declaration of Authorship

I hereby declare that the thesis submitted was created and written solely by myself without
any external support. Any sources, direct or indirect, are marked as such. I am aware of
the fact that the contents of the thesis in digital form may be revised with regard to usage of
unauthorized aid as well as whether the whole or parts of it may be identified as plagiarism. I
do agree my work to be entered into a database for it to be compared with existing sources,
where it will remain in order to enable further comparisons with future theses. This does not
grant any rights of reproduction and usage, however.

This document was neither presented to any other examination board nor has it been pub-
lished.

German: Erklärung der Autorenschaft (Urheberschaft)

Ich erkläre hiermit, dass die vorliegende Arbeit ohne fremde Hilfe ausschließlich von mir er-
stellt und geschrieben worden ist. Jedwede verwendeten Quellen, direkter oder indirekter Art,
sind als solche kenntlich gemacht worden. Mir ist die Tatsache bewusst, dass der Inhalt der
Thesis in digitaler Form geprüft werden kann im Hinblick darauf, ob es sich ganz oder in Teilen
um ein Plagiat handelt. Ich bin damit einverstanden, dass meine Arbeit in einer Datenbank
eingegeben werden kann, um mit bereits bestehenden Quellen verglichen zu werden und dort
auch verbleibt, um mit zukünftigen Arbeiten verglichen werden zu können. Dies berechtigt
jedoch nicht zur Verwendung oder Vervielfältigung.

Diese Arbeit wurde noch keiner anderen Prüfungsbehörde vorgelegt noch wurde sie bisher
veröffentlicht.

. .
Date, Signature

Abstract

Logic programming has gained much more interest in the past decade and miniKanren has
been a big part of it. However, despite the fact that miniKanren as a concept is easier to
understand than traditional logic languages such as prolog and mercury, miniKanren and logic
programming itself still remain challenging for beginners.As a result, it still does not have as
many adherents as it potentially could. MiniKanren visualizer is created to make a difference
and provide a tool which would help new people in relational programming community to easy
understand miniKanren concepts and engage with logic programming. Moreover, this utility
can help knowledgeable people to achieve better results in less time. This thesis presents
the development and evaluation of a miniKanren visualizer, an interactive tool designed to aid
users in better comprehending the processes and constructs of miniKanren programs.

TODO: Looks like I am missing something. Dig inside my head. (target size: 15-20 lines)

iii

Contents

1 Introduction 1

2 Background 2
2.1 Welcome to the world of miniKanren . 2

2.1.1 Unify . 2
2.1.2 Conjunction . 3
2.1.3 Disjunction . 3
2.1.4 Fresh . 4

2.2 Analogs and work in the field . 5
2.2.1 microScopeKanren . 5
2.2.2 First-order miniKanren representation: . 6

2.3 Unicanren . 6
2.3.1 The reasons to choose Unicanren . 6
2.3.2 Inspecting Unicanren . 7

3 Approach 12
3.1 GUI . 12

3.1.1 Design Steps . 12
3.1.2 Basic Design . 13
3.1.3 GUI implementation . 15

4 Results 17

5 Perspectives 18

6 Conclusion 18

iv

1 Introduction

The main purpose of this thesis is to introduce a useful tool for beginners in the field of logic
programming. The primary issue with miniKanren is that it is difficult to debug and even harder
to track all the relations and search strategies. That is why developing a visualizer will be highly
beneficial. However, this tool is not supposed to be only for newcomers; it is also designed to be
useful for experienced users in the field. In a more advanced capacity, it can help experienced
users by showing the debugging process and providing a clear overview of program execution,
which for sure will save time and effort.

One of the main problems addressed in this thesis is how to create a visualizer that is both fully
functional and easy to understand for users with different levels of experience. Additionally, we
want to explore if a visualizer has already been implemented in this field. Although it is highly
unlikely that someone has developed one specifically for miniKanren, visualizers for languages
miniKanren is built upon could potentially be useful. The usefulness of such visualizers comes
from the fact that they can provide insights into the design and implementation of a miniKanren-
specific visualizer.

Despite the abundance of material on miniKanren, there is limited information about visualizers
in this field, which makes this project highly unique and potentially challenging. This is the
second problem to address. Lastly, since miniKanren is a domain-specific language, we need
to determine which concrete language to focus on and the rationale behind this choice. This
is the final problem to research. As we can see, there are several aspects that need to be
addressed during the research process.

This thesis is divided into several parts.

In the first section, titled Background, we will provide an overview of the field to make this thesis
accessible to readers who may not be familiar with miniKanren or logic programming. We will
offer a concise definition of the miniKanren language and compare it to traditional relational
programming languages, such as Prolog, in the context of differences in approaches to creating
visualizers. Furthermore, we will present a detailed explanation of the miniKanren concept,
discuss relevant work in this field, and explore how it can inform the visualizer’s implementation.
Additionally, we will examine the languages miniKanren was built upon, determine which one
is best suited for our purposes, and explain our choice.

The second section, Evaluation, will be the most engaging part of the thesis. This part will
detail our proposed approach to implementing the visualizer, including several subtasks that
will be discussed individually but are directly related to the main task. We will also provide a
brief description of the technologies used in the visualizer’s development. In this section, we
will discuss instances where our initial approach may have been incorrect or suboptimal. While
these instances may not be directly relevant to the final outcome, they could provide valuable
insights for others working on similar projects in related areas.

The final section, Results, will showcase the culmination of our work. As one might expect, this
part will not only present the actual visualizer but also summarize the entire research process,
providing a comprehensive overview of the work.

I hope you enjoy reading this thesis and gain valuable insights from it. Have a great time
exploring my findings.

1

2 Background

2.1 Welcome to the world of miniKanren

As much as I want to believe that miniKanren is enough popular or intuitive language that I do
not need to explain it I realize that without proper insight I will not be able to talk freely in the
next steps. I am not going to make a full examination of miniKanren language, it can be find in
"The Reasoned Schemer". however, we are going to have a closer look into this.

miniKanren is an embedded Domain Specific Language (DSL) implemented in various host
languages like Racket, Clojure, Haskell, and OCaml among others. The language revolves
around several key concepts for the first we will primitive relations.

2.1.1 Unify

The key relation in miniKanren is unify. It serves as the most primitive relation, and almost
certainly, any other sophisticated relation will employ this relation under the hood. As the name
suggests, the unify relation unifies two expressions. In simpler terms, it attempts to assert that
the two expressions are identical.

Examples:

(run * (q)
(== ’ ca t ’ ca t))

In this scenario, the program returns () (as
we never really did anything with q), but this
program completes successfully because
miniKanren performs unification of the two
equal constants.

(run * (q)
(== q ’ ca t))

The program returns ’cat because q, which
was not associated with any values before,
is now unified with the string constant ’cat
using the (==) relation.

(run * (q)
(f resh (a b c)

(== ‘ (a b c) ‘ (1 2 3))
(== q b)))

In this example, we have two successful
unify relations. The first one associates a list
of fresh variables (we will explain this con-
struction later) a, b, and c with the list of 1,
2, and 3, respectively. As we can infer, this
program returns the substitution q = 2. Sim-
ilarly, we could unify q with a and c to get q
= 1 and q = 3.

(run * (q)
(== ’ ca t ’ dog))

In this scenario, the program fails because,
as we know, ’cat is not equal to ’dog.

(run * (q)
(f resh (r)

(== ’ ca t r)
(== r 13)))

In this scenario, the program also fails be-
cause, as we know, r, which represents a
cat, is not equal to 13.

2

https://mitpress.mit.edu/books/reasoned-schemer-second-edition

To summarize, we can attempt to unify any two expressions, such as constants, variables, and
compound terms. The unification process can either complete successfully or fail if there are
any conflicts.

(Rem. 1) Changing the order of the unify arguments does not make any difference.

2.1.2 Conjunction

We have already touched upon conjunction in previous examples, but it may not have been
entirely clear. In the Scheme syntax, conjunction is implicit. Essentially, when you write two
or more goals in a row, you are using conjunction. While this is not the standard for every
implementation of miniKanren, we will use this syntax until we begin discussing unicanren.

(run * (q)
(f resh (a b c)
(== a ’ ca t)
(== b a)
(== b c)
(== q c)))

All of the goals q in the program run(q)
((fresh (...) g g g g g ...)) must succeed.
This is a true representation of conjunction.

2.1.3 Disjunction

For disjunction, we have a specific construction called Conde.

(run * (q)
(f resh (r)

(conde
((== r 1))
((== r 2))
((== r 3))))

(== q r))

The program returns (1 2 3). Conde at-
tempts to evaluate its first line and succeeds,
so it proceeds to the unify relation and suc-
cessfully evaluates it. The process is re-
peated two more times with the other Conde
goals.

(run * (q)
(f resh (r v)

(conde
((== r 1) (== v ‘ one))
((== r 2) (== v ‘ two))
((== r 3) (== v ’ th ree)

))
(== q ‘ (, r , v))))

The program returns ((1 one) (2 two) (3
three)). As demonstrated, a single Conde
line can contain multiple subgoals. In fact,
there can be any number of subgoals within
a Conde line. A Conde line succeeds if all of
its subgoals succeed.

(Rem. 2) Conde succeeds if any of its lines succeed.

(run * (q)
(f resh (r)

(conde
((== 2 1))
((== 3 2))
((== 1 3))))

(== q 3))

The program returns (), as none of the
Conde lines succeeded.

3

If we want at least one Conde line to succeed, we can use the primitive goal success.

(run * (q)
(f resh (r v)

(== r 4)
(conde

((== r 1) (== v ‘ one))
((== r 2) (== v ‘ two))
((== r 3) (== v ‘ th ree)

))
(succeed (== v ‘ f ou r))

(== q ‘ (, r , v))))

In this scenario, all lines except the last one
will fail due to the fact that r was previously
associated with the number 4. As a result,
the output will be (4 four).

We can set a value after the run primitive to specify the search depth. Previously, we did not
set the depth, and the program searched for all possible solutions.

(run 2 (q)
(f resh (r v)

(conde
((== r 1) (== v ‘ one))
((== r 2) (== v ‘ two))
((== r 3) (== v ’ th ree)

))
(== q ‘ (, r , v))))

The program returns ((1 one) (2 two)). If we
set the value to 1, we will obtain the result
((1 one)).

(Rem. 3) In terms of imperative programming, conde can be likened to an if-else expression.
In a sense, it really is, because we can treat the left side goals as conditions and the right side
goals as expressions. succeed in this case would be the else expression. The true and false
values in the context of conde are the results of the goals fail or succeed.

2.1.4 Fresh

Now, let’s examine the fresh primitive. As its name suggests, it introduces new or "fresh"
variables. Any fresh variable can be associated with some expression or variable.

(run * (q)
(f resh (r v)
(== q ‘ (, r , v))))

The program returns ((_0 _1)), as the pro-
gram does not associate r and v with any
value.

In this case, variables r and v are introduced but not associated with any value, so they remain
fresh.

The fresh primitive, as the name suggests, introduces new or "fresh" variables. Any fresh
variable can be associated with some expression or variable.

(run * (q)
(f resh (r v)
(== ’ ca t v)
(== q ‘ (, r , v))))

The program returns ((_0 cat)), as the pro-
gram associates the variable v with "cat".

4

(run * (q)
(f resh (r v)
(== ’ ca t r)
(== q ‘ (, r , v))))

The program returns ((cat _0)), as the pro-
gram associates the variable r with "cat".

As we can see, the number of fresh variables does not depend on the order of introduction in
the fresh primitive.

That concludes all the necessary parts of miniKanren needed for now. During the research,
there will be new introductions. For now, we should focus on the analogs.

2.2 Analogs and work in the field

There are actually just a few analogs.

2.2.1 microScopeKanren

MicroScopeKanren is a variant of the miniKanren relational programming language that incor-
porates a microscope-based approach to debugging and visualization. It is much similar to
what we are trying to aproach. The main idea behind MicroScopeKanren is to provide a tool
that allows users to observe and analyze the internal state of a miniKanren program as it exe-
cutes. This is achieved by capturing and displaying various intermediate states of the program,
including the search tree, substitutions, constraints, and goals.

Figure 1: microScopeKanren interface

One of the features is it provides wild options observing the states of the program. It is imple-
mented on JavaScript and it visual part is defined by HTML page so it works in a browser. It is
providing step-by-step visualization which is very useful.

5

MicroScopeKanren can be a valuable tool for developers working with miniKanren programs,
as it provides a powerful and intuitive way to observe and understand the program’s execution.
It allows for more efficient debugging and exploration of complex relational logic, leading to
improved program understanding and development productivity.

But it it does not really what we want from miniKanren visualizer and this realization has many
disadvantages:

1. It is written in JavaScript and look very different from the original Scheme implementation.

2. It does not have any appropriate documentation.

3. It works in a browser and it is not very comfortable

4. It does not have any code window and you cannot debug you own programs

These disadvantages make this solution not applicable for our purposes. But it can be used
as a reference for the graphical design of our program and can bring some necessary ideas
about our approach.

2.2.2 First-order miniKanren representation:

A paper exists that explores the stepper for the original miniKanren implementation and inves-
tigates its potential as a debugger and search tool. While this paper presents intriguing ideas,
it may not be directly applicable to our case as it does not focus on visualization and is based
on the original implementation of miniKanren.

The paper provides insights into the stepping mechanism and offers a deeper understanding of
the execution process in miniKanren. It explores techniques for tracking and analyzing program
execution, which can be valuable for debugging and optimization purposes. However, the lack
of visualization capabilities limits its practical use as a visualizer.

In our case, the goal is to develop a visualizer that provides a graphical representation of
the program execution, allowing users to observe and analyze the search process in a more
intuitive and interactive manner. This requires a different approach that specifically focuses
on visualizing the execution tree, substitutions, and other relevant aspects of miniKanren pro-
grams.

2.3 Unicanren

2.3.1 The reasons to choose Unicanren

In order to implement a visualizer, we must choose a specific implementation of miniKanren.
As previously mentioned, we need to select an exact language implementation of miniKanren.
The implementation should be easily modified to be applicable to a visualizer, be designed as
close to the original Scheme implementation as possible, and be able to integrate with existing
GUI frameworks.

Initially, we must determine which languages already have miniKanren implementations. MiniKan-
ren has numerous implementations across many languages. It’s important to choose a func-
tional paradigm language to support and manipulate these implementations easily. Functional
language implementations of miniKanren have multiple advantages. Firstly, they are closer
to the original Scheme implementation, making them easier to inspect due to the ample in-
formation available on the original implementation. Secondly, miniKanren implementations in

6

http://minikanren.org/workshop/2019/minikanren19-final2.pdf

imperative languages tend to differ from the original implementation. Lastly, functional lan-
guages’ pattern-matching capabilities are highly useful for manipulating miniKanren’s complex
structures.

This leaves us with two language choices: Haskell and OCaml. Although Haskell offers more
miniKanren implementations, we should consider using OCaml as the base language for sev-
eral reasons. Firstly, some work has already been done in this field using OCaml. Secondly,
OCaml is more user-friendly. Lastly, the choice depends on the specific miniKanren implemen-
tation.

Unicanren is a miniKanren implementation designed specifically for the OCaml programming
language. It builds upon the core principles and features of the original miniKanren implemen-
tation in Scheme while taking advantage of OCaml’s expressive capabilities and performance
characteristics.

Similar to the Scheme implementation, Unicanren provides a powerful relational programming
paradigm, enabling the exploration of multiple possible solutions and facilitating the develop-
ment of sophisticated search strategies.

Similarity to the original miniKanren implementation is crucial for us due to the existing docu-
mentation on the Scheme implementation.

Unicanren benefits from OCaml’s ecosystem, which includes a wide range of libraries and tools
for building robust applications. Developers can leverage these resources to enhance their
miniKanren programs with additional functionality and seamlessly integrate them into OCaml
projects.

Unicanren retains miniKanren’s core syntax and principles, while its implementation in OCaml
provides a powerful and efficient environment for logic programming. By combining miniKan-
ren’s relational programming paradigm with OCaml’s performance and type system, Unicanren
empowers us to tackle complex computational problems and reason about relationships and
constraints effectively.

2.3.2 Inspecting Unicanren

Unicanren works similarly to the original miniKanren. However, we never really discussed how
miniKanren works under the hood. As previously mentioned, the Unify (==) is the core relation
by which we can implement all other relations. (==) is the basic goal that should be inspected
for its mechanism of work.

Unify relies on associations. An association is the basic relation that, like any binary relation,
can be explained as a pair. In the original miniKanren, we use (z . ’b) to show an association.
The first element of the pair must be a variable, and we call it the left-hand side (lhs); the
second element is the right-hand side(rhs) and can be any value.

rhs (z . ’ b) The value is b.

rhs (z . w) The value is the variable w.

(Rem. 1) As previously mentioned, the rhs can be any value. For example:

7

rhs (z . (1 w 3)) The value is the list (1 w 3).

l hs (z . ’ b) The value is z. But this one function is un-
necessary.

(z . z) Even though every association is a pair, we
do not allow the rhs to be the same as the
lhs. Such a pair cannot be treated as an as-
sociation.

The list of associations is called a substitution. For example:

((z . ’ a)) (x . w) (y . z)) This is exactly a substitution.

As we can see, substitution is essentially a map. One might consider a function that traverses
the list and finds the rhs based on the defined lhs. However, we will actually require something
more powerful.

8

(de f ine walk
(lambda (v s)

(cond
((var? v)
(cond

((assq v s) ⇒
(lambda (a)

(walk (rhs a) s)))
(e lse v)))

(e lse v))))

This is the definition of the function walk.
What exactly does this function do? In short,
this function traverses the list and attempts
to find v in the lhs of the associations. When
it locates v, it checks whether its rhs is a vari-
able or not. If it is not a variable, it returns
this rhs; otherwise, it continues the recursion
with rhs as the new v.

Essentially, it traverses the list multiple times before finding anything other than a variable.
Although it follows a depth-first search (DFS) approach with no ideal asymptotic behavior, it is
quite simple to write and explain.

(walk z ((z . ’ a)) (x . w) (y . z))
)

The result is "a".

(walk y ((z . ’ a)) (x . w) (y . z))
)

The result is "a". The function walk encoun-
ters the association (y . z) and then performs
another walk with z as the input, eventually
finding the value "a".

Substitutions can also be circular. For example:

(walk x ((x . y)) (z . x) (y . z))) There is no value. The walk function will en-
ter an infinite loop.

However, if we construct the substitution correctly, this situation can be avoided.

There is another problem:

(walk u ((x . ’ b)) (w . (x ’ e x)) (
u . w)))

The result will be ‘(x ’e x)‘. However, we have
the association ‘(x . ’b)‘, so we may expect
the result to be ‘(’b ’e ’b)‘. But the ‘walk‘ func-
tion finds the first rhs that is not a variable.
Therefore, we most definitely need another
implementation.

Here is an alternative implementation:

(de f ine walk *
(lambda (v s)

(l e t ((v (walk v s)))
(cond

((var? v) v)
((p a i r ? v)

(cons
(walk * (car v) s)
(walk * (cdr v) s)))

(e lse v))))

In this case, ‘car‘ is a function that extracts
the head of a list, and ‘cdr‘ extracts the tail.
Within this function, there is a check on the
list. If the list is a pair (which is essentially
any non-empty list), there are two branches
where we recursively continue the operation
on both sides of the pair.

9

As the result:

(walk u ((x . ’ b)) (w . (x ’ e x)) (u
. w)))

The result will be ‘(’b ’e ’b)‘, as expected.

In the original Scheme implementation, there are additional functions like ‘ext-s‘ and ‘ext-s’‘
that prevent the addition of associations that would cause loops. However, we will not delve
into them as they are unnecessary for our purposes and implemented differently in Unicanren.

Now, let’s examine how ‘walk*‘ is implemented in Unicanren:

let rec walk subst : t -> t = function
| Var v ->
(match Subst.find v subst with
| exception Not_found -> Var v
| t2 -> walk subst t2)

| Symbol s -> Symbol s
| Cons (l, r) -> cons (walk subst l) (walk subst r)
| Nil -> Nil

;;

Listing 1: Walk implementation in Unicanren

As we can see, it is even easier to implement ‘walk*‘ in OCaml due to the power of pattern
matching. This partial function is typed to take a value of type ‘t‘ and return a value of the same
type. In our case, our type is ‘Subst‘ (substitution). As you can observe, ‘Subst‘ is implemented
as a map, which simplifies things. The implementation of ‘walk*‘ closely resembles the logic
we discussed earlier. If ‘v‘ is a variable, we recurse; if it is a list, we also recurse; otherwise,
we simply return the input.

Now, let’s explore the ‘unify‘ function. In this case, inspecting the original implementation may
not be as useful as it differs significantly from the implementation in Unicanren and can be
more challenging to comprehend. Here is the original code from Unicanren:

let rec unify acc x y =
match Value.walk acc x, Value.walk acc y with
| Value.Var n, Value.Var m when n = m -> Some acc
| Var n, (Var _m as rhs) -> Some (Subst.add n rhs acc)
| Symbol m, Symbol n when n = m -> Some acc
| Symbol _, Symbol _ -> None
| Nil, Nil -> Some acc
| rhs, Var n | Var n, rhs -> Some (Subst.add n rhs acc)
| Cons (l1, r1), Cons (l2, r2) ->
let open Base.Option in
unify acc l1 l2 >>= fun acc -> unify acc r1 r2

| Symbol _, Cons (_, _)
| Cons (_, _), Symbol _
| Nil, Cons (_, _)
| Cons (_, _), Nil
| Symbol _, Nil
| Nil, Symbol _ -> None

;;

Listing 2: Unify implementation in Unicanren

10

In this scenario, ‘acc‘ represents the substitution. The ‘unify‘ function covers several cases,
explaining all the possible variants. When the constraints are not applicable by definition, it
returns ‘None‘. If both ‘x‘ and ‘y‘ are symbols, it returns the same substitution if they are equal,
or ‘None‘ otherwise. The same applies to variables; if they are equal, there is no need to make
any changes. Otherwise, a new association is added to the substitution. If there are two lists,
they are split into their heads and tails, and the unification is performed recursively on each
corresponding pair.

Lastly, there is the ‘eval‘ function.

let eval ?(trace_svars = false) ?(trace_uni = false) ?(trace_calls = false) =
let open State in
let open StateMonad in
let open StateMonad.Syntax in
let rec eval root : (st, subst Stream.t) StateMonad.t =
match root with
| TraceSVars xs ->
...

| Unify (l, r) ->
....

| Conde [] -> assert false
| Conde (x :: xs) ->
...

| Conj [] -> assert false
| Conj [x] -> eval x
| Conj (x :: xs) ->
...

| Fresh (name, rhs) ->
...

| Call (fname, args) ->
...

and eval_term = function
| Nil -> return Value.Nil
| Symbol s -> return (Value.symbol s)
| Cons (l, r) -> return Value.cons <*> eval_term l <*> eval_term r
| Var s ->
let* next = lookup_var_syntax s in
(match next with
| None -> fail (‘UnboundSyntaxVariable s)
| Some t2 -> return t2)

in
eval

;;

Listing 3: Eval implementation in miniKanren

/ / Simple JavaScr ip t code example
f u n c t i o n greet (name) {

console . log (" Hel lo , " + name + " ! ") ;
}

Listing 4: JavaScript Example

This is a part of the evaluator, which is the main component of Unicanren. The function is
recursive, and some of the relations, such as Call, Unify, or TraceSVars, terminate. Others

11

depend on the evaluation of their sub-goals. The eval function takes the root of the program
and returns a stream of substitutions. These substitutions become the solutions in the end.
For now, it is important to note that by adding a logger within these cases, we can gather all
the necessary information to build a tree.

Now, let’s examine how we can approach solving this problem.

3 Approach

There are different ways to integrate GUI with OCaml. The easiest option is to use Js_of_ocaml
to compile OCaml code into JavaScript and import it into QML to build the GUI. The second
option is to use lablqml and use OCaml as the main language for deploying the main appli-
cation. The first option is preferred because there is existing information available online, and
Js_of_ocaml is easier to use compared to lablqml, which has limited documentation.

Js_of_ocaml is straightforward to use as it allows calling external JavaScript functions from
OCaml code. This is achieved by translating OCaml code to JavaScript. Thus, we can write a
logger in JavaScript and easily integrate it into QML.

3.1 GUI

Since I have chosen to use Js_of_ocaml, it is necessary to select a compatible framework for
working with JavaScript. In this case, Qt/QML is the most suitable framework for our purposes.
Now, let’s discuss the steps that need to be taken to design the visualizer for miniKanren in the
context of using Js_of_ocaml and Qt/QML.

3.1.1 Design Steps

To begin designing the visualizer, we need to consider the following steps:

1. Define the basic design: Start by determining the overall design of the visualizer. This
involves deciding how the program execution will be graphically represented. Since
miniKanren programs resemble trees, it is logical to represent the execution as a tree
structure. However, there are various ways to visualize a tree. It can be represented as
a graph with nodes and arrows, or it can be presented in a hierarchical manner similar to
how file systems are displayed. As well as visualization of execution it should be definitely
a window for the code that is going to be executed.

2. Identify applicable tools: Determine the tools and techniques that can be used to imple-
ment the desired visual representation. This may involve exploring different libraries or
frameworks that provide tree visualization capabilities. Consider the features, documen-
tation, and community support offered by these tools to ensure their compatibility with
Js_of_ocaml and Qt/QML.

3. Design the JavaScript interface: As we are using Js_of_ocaml to compile OCaml code
into JavaScript, it is essential to design the JavaScript interface that will facilitate the
communication between the OCaml code and the Qt/QML GUI. This interface should
enable the exchange of data and function calls between the two components.

12

3.1.2 Basic Design

miniKanren programs can be very deep and tree in the traditional form of graph is not very
scalable. In opposite, if we represent tree by the TreeView model it can be easy scalable as
we can hide and reveal any nodes we want. In QML there is the basic entity TreeView it need
only model which can be implemented in Qt. There are not many requirements for the code
window. Basically, it only needs text field and numeration. Maybe syntax highlight.

As well we need to to decide how our program will look like. Basically there are few concepts
that we may use.

Our program may look like IDE. In this scenario we often need such components:

1. Main code window. Maybe with tabs on the top.

2. File system bar on the left.

3. Tool bar at the top.

4. Debug tools at the bottom.

But at this case there are a lot of elements that are not actually needed at this point. On the
other side we need a lot of space for our tree representation of an execution. So it becomes
almost obvious that we do not need file system sidebar because it will be an issue to navigate
between them. So we basically need only tree representation side and code editor and they
must have as much space as possible. That leaves as with the following prototype:

13

Figure 2: Visual Design Prototype

As we can see it has all necessary tools and buttons. But there is a problem. Where will the
result show? We never actually defined output window. Actually, if this is a side tool it is not
really necessary. But if we should lets add.

14

Figure 3: Visual Design Prototype 2

This one looks fine. We should use this as a goal.

3.1.3 GUI implementation

We already defined basic interface of interacting with OCaml. There is left to implement the
GUI. Lets start from implementing the tree representation. As well we need to choose the QML
entity and implement a model for interacting with the tree. For this purpose we should choose
TreeViev QML entity. This one is supposed to be used in file hierarchy entities. But there is a
problem that it does not have standard Qt models that would be applicable for drawing anything
beside file hierarchy. So that is the problem we should solve.

We should provide a model that would be nice for us to use. TreeView could use any Qt model
that are derived from QAbstractItemModel. QAbstractItemModel is obciously an abstract class
with following interface:

bool hasIndex(int row, int column, const QModelIndex &parent = QModelIndex())

virtual QModelIndex index(int row, int column,
const QModelIndex &parent = QModelIndex())

virtual QModelIndex parent(const QModelIndex &child)

15

virtual QModelIndex sibling(int row, int column,
const QModelIndex &idx)

virtual int rowCount(const QModelIndex &parent = QModelIndex())

virtual int columnCount(const QModelIndex &parent = QModelIndex())

virtual bool hasChildren(const QModelIndex &parent = QModelIndex()) const

virtual QVariant data(const QModelIndex &index, int role = Qt::DisplayRole)

virtual bool setData(const QModelIndex &index, const QVariant &value, int role =
Qt::EditRole)

virtual QVariant headerData(int section, Qt::Orientation orientation, int role =
Qt::DisplayRole)

virtual bool setHeaderData(int section, Qt::Orientation orientation, const QVariant
&value, int role = Qt::EditRole)

virtual QMap<int, QVariant> itemData(const QModelIndex &index)

virtual bool setItemData(const QModelIndex &index, const QMap<int, QVariant> &roles)

Listing 5: QAbstractItemModel Interface

We must define all of it for our purposes. There are two interesting methods: addNode and
stepUp. Others just support Qt model.
void TreeModel::addNode(const QString &str) {

beginResetModel();
QList<QVariant> columnData;
columnData << newCustomType(str, 0);
auto childItem = new TreeItem(columnData, lastNode);
lastNode->appendChild(childItem);
lastNode = childItem;
endResetModel();

}

Listing 6: addNode Implementation

void TreeModel::stepUp() {
beginResetModel();
lastNode = lastNode->parentItem();
endResetModel();

}

Listing 7: stepUp Implementation

addNode(title) {
this.canvas.model.addNode(title);

}

end() {
this.canvas.model.stepUp();

}

Listing 8: JS Part

16

There will be no explanation of other functions because there are just defining model logic and
have no connection to the main theme.

As well we should implement code editor. For our purposes there will be enough just QML
canvas. The rest of logic might be implemented through JavaScript and redirected straight to
the OCaml interpreter.

module UserInterface = struct
open Language
open Interpreter

let eval_program (prog : string) =
let open StateMonad in
let res = match interpretor prog with

| Interpret.Ok g ->
(match StateMonad.run (eval true true true g) State.empty with

| Result.Ok r -> Stream.take ~n:(-1) r
| Result.Error e -> failwiths "Error: %a" pp_error e)

| Interpret.Error e -> failwiths "Error: %a" pp_error e
in List.iter (fun st -> Js.Unsafe.global##.resultf (Js.asprintf "%a\n%!"

(Subst.pp Value.pp) st) res
;;

Listing 9: Interpreter prototype

Result will pass via JS interface connection to QML output window. Js.Unsafe.global##.resultf
calles the external function from our JS interface.

(target size: 5-10 pages)

4 Results

1. Code Window: The code window component was successfully implemented, providing
a user-friendly interface for inputting and editing MiniKanren programs. Users can con-
veniently enter their code, navigate through it, and make modifications. The prototype
parser and lexer allow for basic error detection during the build process. Although syntax
highlighting was not included in the current implementation, it can be considered as a
future enhancement.

2. Tree Representation: The tree representation of the MiniKanren search tree was imple-
mented. As the program executes, the visualizer displays the search tree, representing
different states and choices made during the computation. This visualization allows us to
understand program flow, observe backtracking, and explore alternative solutions. The
tree provides valuable insights into the execution process.

3. OCaml-GUI Interaction: The interface for seamless interaction between OCaml and was
implemented successfully. This integration enables real-time updates and synchroniza-
tion between the MiniKanren engine implemented in OCaml and the graphical user in-
terface designed using QML. As the program executes or user interactions occur, the
visualizer dynamically reflects these changes, providing an interactive and responsive
experience.

4. Parser and Lexer: A prototype of the parser and lexer for MiniKanren programs was de-
veloped. These components allow for parsing the input code and detecting basic syntax

17

errors during the build process. What is more important it allows to run programs directly
from the window.

5 Perspectives

The implementation of the MiniKanren visualizer prototype opens up several exciting avenues
for future development and enhancement. Here are some potential directions for further im-
provement:

1. Syntax Highlighting: Implementing syntax highlighting in the code window can signifi-
cantly improve the user experience. Syntax highlighting can visually distinguish different
elements of the MiniKanren language, making the code more readable and aiding in error
detection.

2. Advanced Error Reporting: Enhancing the parser and lexer to provide more detailed and
informative error messages can assist users in identifying and resolving syntax errors
more efficiently. Clear and descriptive error messages can guide users towards rectifying
issues and improving code quality.

3. Constraint Visualization: If working with constraint logic programming variants of MiniKan-
ren, incorporating visualizations for constraints and their propagation can aid in under-
standing and debugging constraint satisfaction problems. Visualizing constraints and
their interactions can help users identify inconsistencies and refine their constraint spec-
ifications.

4. Improving current application Interface in order to make it look intuitive and fully func-
tional. As well it would be great to implement user-friendly controls so it will be easy to
manipulate the execution and writing the program.

5. Integration with IDEs: Integrating the MiniKanren visualizer as a plugin or extension for
popular integrated development environments (IDEs) can streamline the development
workflow. Seamless integration with IDEs can provide features such as code completion,
documentation lookup, and integrated debugging, enhancing productivity and ease of
use.

6 Conclusion

In summary, the implementation of the MiniKanren visualizer demonstrates the concept of
programming in miniKanren in suitable way with the possibility to inspect code and run various
programs with the visualization of all processes, which has a big step to simplification of the
programming on miniKanren. While syntax highlighting was not included in this iteration, the
prototype showcases the potential for further enhancements and future development of the
visualizer, including additional features and error detection capabilities in the parser and lexer.

18

	Introduction
	Background
	Welcome to the world of miniKanren
	Unify
	Conjunction
	Disjunction
	Fresh

	Analogs and work in the field
	microScopeKanren
	First-order miniKanren representation:

	Unicanren
	The reasons to choose Unicanren
	Inspecting Unicanren

	Approach
	GUI
	Design Steps
	Basic Design
	GUI implementation

	Results
	Perspectives
	Conclusion

