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Problem Statement Distillation
Fusion is an ubiquitous optimization for dence applications widely used, Distillation implements deforestation by removing intermediate data struc-
e.g., In Tensorflow, aimed to reduce memory usage. Is is also a highly tures, i.e. those first constructed and then deconstructed, providing the
desired optimization in sparse applications [1| but it is hard to implement following bonuses

due to pointer-chaising |2| nature of the latter. The basics of this opti-
mization is the removal of intermediate data structures : those which are
firstly constructed and then deconstructed. This is common for functional
programming where such optimization is often addressed as deforestation.

e Specialization, i.e., it partially evaluates the program on statically known
arguments.

e Yields tail recursive modulo cons programs, which could ease the follow-

. . ing translation to hardware.
We propose the usage of a functional quad-tree represenation for sparse

data and disillation to support fusion for sparse applications. e Gives potentially assympotically greater speed-up than deforestation.
Motivation: Kernel fusion Motivation: Mask fusion |1]
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Evaluation: Hardware Evaluation: Software

E-wise successive additions E-wise successive additions Kronecker with diagonal masking Kronecker with lower triangle masking
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Implementation Results Future Research
We use the distiller authored by Geoff Hamil- Distillation gives prominent results namely e Moving the disiller from proot-of-concept to
ton |3] and its functional language to evaluate | ready-to-use.
e Shows up to 60% less reductions and 45%

the approach in terms of reductions and mem- . | .
0Ty accesses 0 less memory accesses in software. e Moving the hardware compiler from proot-ot-

In order to provide both enough performance concept to ready-to-use.
and interoperability with C++ (in which mod-
ern sparse frameworks are mostly written) we

e Shows up to 20% less clock cycles and mem-
ory writes in hardware. e Bridge the gap between our approach and
existing sparse frameworks in a form of

alm tp synthesize a FPGA. lfernel from d.istille(i_ OpenCL-like kernels.

functional program and utilize FHW project |4

to do so. e Real-world examples evaluation.
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