
DistillingSparseLinearAlgebra
Aleksey Tyurin1,2

alekseytyurinspb@gmail.com
1JetBrains Research, Russia 2St. Petersburg University, Russia

Problem Statement
Fusion is an ubiquitous optimization for dence applications widely used,
e.g., in Tensorflow, aimed to reduce memory usage. Is is also a highly
desired optimization in sparse applications [1] but it is hard to implement
due to pointer-chaising [2] nature of the latter. The basics of this opti-
mization is the removal of intermediate data structures : those which are
firstly constructed and then deconstructed. This is common for functional
programming where such optimization is often addressed as deforestation.

We propose the usage of a functional quad-tree represenation for sparse
data and disillation to support fusion for sparse applications.

Distillation
Distillation implements deforestation by removing intermediate data struc-
tures, i.e. those first constructed and then deconstructed, providing the
following bonuses

• Specialization, i.e., it partially evaluates the program on statically known
arguments.

• Yields tail recursive modulo cons programs, which could ease the follow-
ing translation to hardware.

• Gives potentially assympotically greater speed-up than deforestation.

Motivation: Mask fusion [1]

*

Mask Matrix Vector

*

Not-fused masking requires 16 reads and
writes to matrix

Fused masking requires 8 reads and writes to
matrix applying mask ahead-of-time

Motivation: Kernel fusion

Some chained
computation

Traditional
evaluation with an
intermediate data
structure in the

middle

Intermediate data structure

Evaluation with fusion where
no intermediate structures
appear and the result is
computed by taking all the

arguments at once

Quad-tree
representation

Evaluation: Software

101 102 103

of non-zeroes

0

101

102

103

104

105

Re
du

ct
io

ns
 /

m
em

or
y

ac
ce

ss
es

 (l
og

)

62%

45%

51%

30%

46%

20%

E-wise successive additions
reductions
reductions_distilled
mem_accesses
mem_accesses_distilled

101 102 103

of non-zeroes

0

101

102

103

104

Re
du

ct
io

ns
 /

m
em

or
y

ac
ce

ss
es

 (l
og

)

56%

25%

41%

23%

41%

24%

Kronecker with diagonal masking
reductions
reductions_distilled
mem_accesses
mem_accesses_distilled

101 102

of non-zeroes

0

101

102

103

104

Re
du

ct
io

ns
 /

m
em

or
y

ac
ce

ss
es

 (l
og

)

56%

29%

46%

22%

Kronecker with lower triangle masking
reductions
reductions_distilled
mem_accesses
mem_accesses_distilled

Evaluation: Hardware

30 40 70
of non-zeroes

0

200

400

600

800

1000

1200

1400

1600

Cl
oc

ks
 /

m
em

or
y

wr
ite

s

21%

19%

22%

15%

21%

20%

E-wise successive additions
clocks
clocks_distilled
mem_writes
mem_writes_distilled

Implementation
We use the distiller authored by Geoff Hamil-
ton [3] and its functional language to evaluate
the approach in terms of reductions and mem-
ory accesses.
In order to provide both enough performance
and interoperability with C++ (in which mod-
ern sparse frameworks are mostly written) we
aim to synthesize a FPGA kernel from distilled
functional program and utilize FHW project [4]
to do so.

References

[1] Carl Yang, Aydin Buluc, and John D. Owens. Graphblast: A high-performance linear algebra-based graph
framework on the gpu, 2020.

[2] Troels Henriksen, Niels G. W. Serup, Martin Elsman, Fritz Henglein, and Cosmin E. Oancea. Futhark:
Purely functional gpu-programming with nested parallelism and in-place array updates. SIGPLAN Not.,
52(6):556–571, June 2017.

[3] Geoff Hamilton. Extracting the essence of distillation. pages 151–164, 06 2009.

[4] S. Edwards, Martha A. Kim, Richard Townsend, Kuangya Zhai, and L. Lairmore. Fhw project : High-level
hardware synthesis from haskell programs. 2019.

Results
Distillation gives prominent results namely

• Shows up to 60% less reductions and 45%
less memory accesses in software.

• Shows up to 20% less clock cycles and mem-
ory writes in hardware.

Future Research
• Moving the disiller from proof-of-concept to

ready-to-use.

• Moving the hardware compiler from proof-of-
concept to ready-to-use.

• Bridge the gap between our approach and
existing sparse frameworks in a form of
OpenCL-like kernels.

• Real-world examples evaluation.

Contact Us
Our team:

• Aleksey Tyurin: alekseytyurinspb@gmail.com

• Daniil Berezun: daniil.berezun@jetbrains.com

• Ekaterina Vinnik: catherine.vinnik@gmail.com

• Semyon Grigorev: s.v.grigoriev@spbu.ru

mailto:alekseytyurinspb@gmail.com
mailto:daniil.berezun@jetbrains.com
mailto:catherine.vinnik@gmail.com
mailto:s.v.grigoriev@spbu.ru

