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Problem Statement
Fusion is an ubiquitous optimization for dence applications widely used,
e.g., in Tensorflow, aimed to reduce memory usage. Is is also a highly
desired optimization in sparse applications [1] but it is hard to implement
due to pointer-chaising [2] nature of the latter. The basics of this opti-
mization is the removal of intermediate data structures : those which are
firstly constructed and then deconstructed. This is common for functional
programming where such optimization is often addressed as deforestation.

We propose the usage of a functional quad-tree represenation for sparse
data and disillation to support fusion for sparse applications.

Distillation
Distillation implements deforestation by removing intermediate data struc-
tures, i.e. those first constructed and then deconstructed, providing the
following bonuses

• Specialization, i.e., it partially evaluates the program on statically known
arguments.

• Yields tail recursive modulo cons programs, which could ease the follow-
ing translation to hardware.

• Gives potentially assympotically greater speed-up than deforestation.

Motivation: Mask fusion [1]
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Not-fused masking requires 16 reads and
writes to matrix

Fused masking requires 8 reads and writes to
matrix applying mask ahead-of-time

Motivation: Kernel fusion
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Evaluation: Software
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Evaluation: Hardware
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Implementation
We use the distiller authored by Geoff Hamil-
ton [3] and its functional language to evaluate
the approach in terms of reductions and mem-
ory accesses.
In order to provide both enough performance
and interoperability with C++ (in which mod-
ern sparse frameworks are mostly written) we
aim to synthesize a FPGA kernel from distilled
functional program and utilize FHW project [4]
to do so.
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Results
Distillation gives prominent results namely

• Shows up to 60% less reductions and 45%
less memory accesses in software.

• Shows up to 20% less clock cycles and mem-
ory writes in hardware.

Future Research
• Moving the disiller from proof-of-concept to

ready-to-use.

• Moving the hardware compiler from proof-of-
concept to ready-to-use.

• Bridge the gap between our approach and
existing sparse frameworks in a form of
OpenCL-like kernels.

• Real-world examples evaluation.
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