Distilling Sparse Linear Algebra

“é?@ Aleksey Tyurinm
%% alekseytyurinspb@gmail.com

L JetBrains Research, Russia ~ 2St. Petersburg University, Russia

Problem Statement Distillation
Fusion is an ubiquitous optimization for dence applications widely used, Distillation implements deforestation by removing intermediate data struc-
e.g., In Tensorflow, aimed to reduce memory usage. Is is also a highly tures, i.e. those first constructed and then deconstructed, providing the
desired optimization in sparse applications [1| but it is hard to implement following bonuses

due to pointer-chaising |2| nature of the latter. The basics of this opti-
mization is the removal of intermediate data structures : those which are
firstly constructed and then deconstructed. This is common for functional
programming where such optimization is often addressed as deforestation.

e Specialization, i.e., it partially evaluates the program on statically known
arguments.

e Yields tail recursive modulo cons programs, which could ease the follow-

. . ing translation to hardware.
We propose the usage of a functional quad-tree represenation for sparse

data and disillation to support fusion for sparse applications. e Gives potentially assympotically greater speed-up than deforestation.
Motivation: Kernel fusion Motivation: Mask fusion |1]
— TJQuad-tree Mask : Matrix VectorT
_ representation] B ‘ P]
® " 0 * | Some chained | >
computation S
>
S, I - |] @ - oo =™
B G N | |
_ Y. - _ B B B L > S.
N e Traditiona’ N Bl B i] _i;;
N " A R " evaluation with an - _ _ J
© — — dntermediate data -1 Not-fused masking requires 16 reads and
structure in the - writes to matrix
|§| N\ S midd]e - -) s -
Intermediate data structure . . - -
- T 1T 1T - E =
\ \ [X X
Evaluation with fusion where N
[X X [X X \ [X N) n . @ ‘* ® }' —_—
@ O — _ no 1ntermediate structures 0
- appear and the result 1s N
computed by taking all the
B B B B B B L T arguments at once N
Ha L _ - Bl
® O — S Fused masking requires 8 reads and writes to

matrix applying mask ahead-of-time

Evaluation: Hardware Evaluation: Software

E-wise successive additions E-wise successive additions Kronecker with diagonal masking Kronecker with lower triangle masking

W reductions

B reductions_distilled
B mem_accesses

I mem_accesses_distilled

clocks I reductions

B reductions_distilled
B mem_accesses

1 === mem_accesses _distilled

41% W reductions

B reductions_distilled
B mem_accesses

4 B mem_accesses_distilled

46% 46%

104 .

clocks_distilled
mem_writes
mem_writes_distilled

20%

=
o
w
=
o
IS

24%
41%

103 |

=
(@)
IS
]
=
o
W

102 .

Clocks / memory writes
=
o
N

=
-
Reductions / memory accesses (log)

Reductions / memory accesses (log)
=
o
w

Reductions / memory accesses (/og)

101 .

=
o
=
=
o
=

30 40 70 0 -
of non-zeroes 101 102 103 101 102 103 101 102
of non-zeroes # of non-zeroes # of non-zeroes

Implementation Results Future Research
We use the distiller authored by Geoff Hamil- Distillation gives prominent results namely e Moving the disiller from proot-of-concept to
ton |3] and its functional language to evaluate | ready-to-use.
e Shows up to 60% less reductions and 45%

the approach in terms of reductions and mem- . | .
0Ty accesses 0 less memory accesses in software. e Moving the hardware compiler from proot-ot-

In order to provide both enough performance concept to ready-to-use.
and interoperability with C++ (in which mod-
ern sparse frameworks are mostly written) we

e Shows up to 20% less clock cycles and mem-
ory writes in hardware. e Bridge the gap between our approach and
existing sparse frameworks in a form of

alm tp synthesize a FPGA. lfernel from d.istille(i_ OpenCL-like kernels.

functional program and utilize FHW project |4

to do so. e Real-world examples evaluation.
Contact Us References

Our team:

|1] Carl Yang, Aydin Buluc, and John D. Owens. Graphblast: A high-performance linear algebra-based graph

e Aleksey Tyurin: alekseytyurinspb@gmail.com framework on the gpu, 2020.

|2] Troels Henriksen, Niels G. W. Serup, Martin Elsman, Fritz Henglein, and Cosmin E. Oancea. Futhark:
Purely functional gpu-programming with nested parallelism and in-place array updates. SIGPLAN Not.,
52(6):556—571, June 2017.

e Daniil Berezun: daniil.berezun@Qjetbrains.com

e L[katerina Vinnik: catherine.vinnik@gmail.com

O Semyon Grigorev: S.V.grigoriev@spbu.ru 3] Geoff Hamilton. Extracting the essence of distillation. pages 151-164, 06 2009.

4| S. Edwards, Martha A. Kim, Richard Townsend, Kuangya Zhai, and L. Lairmore. Fhw project : High-level
hardware synthesis from haskell programs. 2019.

mailto:alekseytyurinspb@gmail.com
mailto:daniil.berezun@jetbrains.com
mailto:catherine.vinnik@gmail.com
mailto:s.v.grigoriev@spbu.ru

