
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Distilling Sparse Linear Algebra

ALEKSEY TYURIN, Saint Petersburg State University, Russia

1 INTRODUCTION
Linear algebra is a great instrument for solving a wide variety of problems utilizing matrices and
vectors for data representation and analysis with the help of highly optimized routines. But in
reality matrices in many applications are often sparse, incurring both computational and storage
inefficiencies, requiring an unnecessarily large storage, occupied by zero elements, and a large
number of operations on zeroes, where the result is obviously known beforehand. The traditional
approach to address these inefficiencies is to compress the matrix and store only the non-zero
elements, and then operate only on the non-zero values. It makes the techniques of matrix com-
pressed representation and sparse linear algebra to be the effective way of tackling problems in
areas including but not limited to graph analysis [13], computational biology [18] and machine
learning [14].

GraphBLAS [3] standard defines sparse linear algebra building blocks useful to express algorithms
for already mentioned areas in a uniform way in terms of sparse matrix and vector operations over
some semiring. These include matrix/vector multiplication, element-wise operations (e-wise for
short), kronecker product, masking, i.e. taking a subset of elements that satisfies the mask or its
complement, and are sufficient to express a lot of algorithms, e.g. PageRank, Breadth-First-Search,
Sparse Deep Neural Network [6].

However sparse computations appear to have a low arithmetic-to-memory operations intensity,
meaning that the main bottleneck of sparse-algorithms is the sparse representation itself that
induces pointer-chasing. Thus, a number of optimizations have been identified [24], whose aim is
to reduce the intensity of memory accesses and the one considered in this work is fusion. Fusion
simply stands for removal of intermediate data structures, namely those that are first constructed
and then deconstructed. There are two types of fusion that we are interested in.
Mask fusion. Ahead-of-time masking could reduce the number of memory accesses in case of,

e.g., matrix-vector multiplication by taking only the elements of interest. In order to achieve such a
behavior, a mask should be fused (i.e. transformed into a single operation) with the corresponding
operation, for the operation to perform computations only for the elements in the mask. The
effect of masking in case of sparse matrix-dense vector multiplication could be seen in figure 1.
Ahead-of-time masking reduces the number of memory accesses from 8 to 3.

Kernel fusion. Kernel fusion is responsible for fusing arbitrary operations. In the case of loop-
based programming fusion simply stands for joining several loops into one to increase memory
locality and reduce the number of required iterations. It is a crucial technique in dense applications
and is usually followed by a stage of polyhedral analysis. This is extensively exploited in frameworks
like TensorFlow and its XLA compiler [2]. A motivating example for general fusion could be seen
in listing 11, which is a snippet (simplified for demonstration) from Luby’s maximal independent
set algorithm implementation [22]. As could be seen it is a series of e-wise matrix additions: two
consecutive element-wise operations could be fused into one, so new_members matrix creation and
further iterations are reduced.

Some general-purpose solutions exists that support fusion, e.g., [10] which are based on map/re-
duce semantics. But in order to support sparse operations they should be able to fuse across index
arithmetic, which is not the case. Also at the moment neither [5] nor [24] have adopted the fusion in

1The original excerpt is in C++, it is rewritten to ease the demonstration. Call-by-value is assumed.

1



50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

Aleksey Tyurin

Fig. 1. Mask fusion example [24]

...
-- select node if its probability is > than all its active neighbors

-- @gt is '>' operation, @lor is logical or
let new_members = eWiseAdd gt prob neighbor_max

iset' = eWiseAdd lor iset new_members in

...

Listing 1. Excerpt from Luby’s maximal independent set algorithm implementation

their implementations. In this work we propose an approach to support fusion for such applications
and outline the overall solution design.

2 SOLUTION
The problem of intermediate data structures is natural for functional programming and a number of
approaches for fusion has been designed, namely partial evaluation, deforestation, supercompilation,
distillation [9, 12, 21, 23]. In this work we will focus on distillation since it is able to produce a
superlinear improvement for the program being optimized [9].

For succesful fusion the compressed representation should be fuseable, so it should avoid indexing
and be natural to functional paradigm. A quad-tree representation [19] looks promising in this
case. The implementation of this compressed representation as an algebraic data type could be
seen in listing 2, it recursively splits a matrix into four submatrices. Turning back to the successive
e-wise matrix additions example, distillation successfully fuses them into one operation where each
matrix is iterated only once as also could be seen in listing 2.

If we now define the notion of intermediate data structure as the number of times a constructor
term within case context is encountered during the reduction of the top-level term, i.e. the number
of times something is deconstructed with pattern-matching, we could see that the fusion also
produces a more effective program, as it could be seen in the table 1, where 𝑥/𝑦 are reductions, the
number of steps to reduce the term to its normal form, and the number of intermediate structures
respectively, the numbers at top are the orders of input matrices. Each example firstly was evaluated
using the interpreter that counts the number of reductions and intermediate structures. Then it
was distilled2 and evaluated again. Matrices/masks have been taken from [7], converted to q-tree
representation and embedded instead of free variables into the corresponding functions. The full
list of benchmarks could be found here [1].
It could be noted that case 𝑐 𝑒0 . . . 𝑒𝑛 , where 𝑐 is a constructor, essentially performs a memory

read, so the optimization reduces the number of eventual memory reads and corresponding writes
2The distiller from [9] was used

2



99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Distilling Sparse Linear Algebra

-- @QNone stands for submatrix which elements are zeroes
data QTree a = QNone

| QVal a
| QNode (QTree a) (QTree a) (QTree a) (QTree a)

main = ...
let new_members = eWiseAdd gt prob neighbor_max

iset' = eWiseAdd lor iset new_members in
...

--gets fused into
main = ...

let iset' = case iset of
... -> case neighbor_max of

... -> case prob of ...
-- @new_members has been eliminated

Listing 2. Fusion by means of distillation

Function Description # of non-zeroes
101 102 103

E-wise successive
additions

Original 107 / 22 11293 / 1852 139851 / 20351
Distilled 44 / 14 6129 / 1433 89215 / 15061

Kronecker with masking Original 213 / 45 535125 / 92470 6968317 / 1220816
Distilled 108 / 25 367868 / 67110 3974610 / 867137
Table 1. Distillation results

as well. Another practical example is masking of a kronecker product, since kronecker product
performs more operations than matrix-vector multiplication, here it is a more representative
example that shows the benefits of masking-fusion. The benefit of optimization is up to 2x in terms
of reductions and up to 1.3x in terms of intermediate structures, hence it could be stated that
distillation is applicable to optimize sparse computations and could be able to speed up practical
algorithms like Luby’s maximal set. The future work and overall idea behind this is described in
the next section.

3 FUTUREWORK
The obvious disadvantage of this approach is that it requires a special domain-specific language
amenable to distillation, so it could hardly be integrated into existing implementations like [5, 24].
However, typical CPUs and GPUs are proven to be underutilized [7, 15, 20, 25], i.e., their computing
units do not achieve peak performance, suffering from the irregularity of memory accesses incurred
by sparsity, so a possible direction could be to design a domain-specific co-processor that is able to
execute this distillation-amenable language. Such an approach has found a successful application
in image processing [16, 17], programmable networks [11] and machine learning [2, 4].

Notably, in [8] a framework is proposed that is capable of transforming arbitraryHaskell programs
into hardware description. It provides datatype-specific memory spaces and divide-and-conquer
optimizations (since q-tree representation is divide-and-conquer by its natures, it is a good fit).
Each case 𝑐 𝑒0 . . . 𝑒𝑛 expression is generated as an explicit memory read of 𝑐 and hence distillation
is also optimizing the hardware in a sense. The resulting hardware is highly-parallel and pipelined,
so it could be a good counterpart to modern CPUs and GPUs.

3



148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

Aleksey Tyurin

REFERENCES
[1] [n.d.]. Distillation benchmarks. https://github.com/YaccConstructor/Distiller. Accessed: 2021-07-01.
[2] [n.d.]. XLA: Optimizing Compiler for Machine Learning. https://www.tensorflow.org/xla?hl=en. Accessed: 2020-12-28.
[3] Aydin Buluc, Timothy Mattson, Scott McMillan, Jose Moreira, and Carl Yang. 2017. The GraphBLAS C API Specification.

GraphBLAS. org, Tech. Rep. (2017).
[4] S. Cass. 2019. Taking AI to the edge: Google’s TPU now comes in a maker-friendly package. IEEE Spectrum 56, 5 (2019),

16–17. https://doi.org/10.1109/MSPEC.2019.8701189
[5] T. A. Davis. 2018. Graph algorithms via SuiteSparse: GraphBLAS: triangle counting and K-truss. In 2018 IEEE High

Performance extreme Computing Conference (HPEC). 1–6. https://doi.org/10.1109/HPEC.2018.8547538
[6] Timothy A. Davis, Mohsen Aznaveh, and Scott Kolodziej. 2019. Write Quick, Run Fast: Sparse Deep Neural Network

in 20 Minutes of Development Time via SuiteSparse:GraphBLAS. In 2019 IEEE High Performance Extreme Computing
Conference (HPEC). 1–6. https://doi.org/10.1109/HPEC.2019.8916550

[7] Timothy A. Davis and Yifan Hu. 2011. The University of Florida Sparse Matrix Collection. ACM Trans. Math. Softw. 38,
1, Article 1 (Dec. 2011), 25 pages. https://doi.org/10.1145/2049662.2049663

[8] S. Edwards, Martha A. Kim, Richard Townsend, Kuangya Zhai, and L. Lairmore. 2019. FHW Project : High-Level
Hardware Synthesis from Haskell Programs.

[9] Geoff Hamilton. 2009. Extracting the Essence of Distillation. 151–164. https://doi.org/10.1007/978-3-642-11486-1_13
[10] Troels Henriksen, Niels G. W. Serup, Martin Elsman, Fritz Henglein, and Cosmin E. Oancea. 2017. Futhark: Purely

Functional GPU-Programming with Nested Parallelism and in-Place Array Updates. SIGPLAN Not. 52, 6 (June 2017),
556–571. https://doi.org/10.1145/3140587.3062354

[11] Xin Jin, Xiaozhou Li, Haoyu Zhang, Nate Foster, Jeongkeun Lee, Robert Soulé, Changhoon Kim, and Ion Stoica.
2018. Netchain: Scale-free sub-rtt coordination. In 15th {USENIX} Symposium on Networked Systems Design and
Implementation ({NSDI} 18). 35–49.

[12] Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. 1993. Partial Evaluation and Automatic Program Generation.
Prentice-Hall, Inc., USA.

[13] Jeremy Kepner and John Gilbert. 2011. Graph Algorithms in the Language of Linear Algebra. Society for Industrial and
Applied Mathematics, USA.

[14] Jeremy Kepner, Manoj Kumar, Jose Moreira, Pratap Pattnaik, Mauricio Serrano, and Henry Tufo. 2017. Enabling
massive deep neural networks with the GraphBLAS. 2017 IEEE High Performance Extreme Computing Conference
(HPEC) (Sep 2017). https://doi.org/10.1109/hpec.2017.8091098

[15] Jure Leskovec and Rok Sosic. 2016. SNAP: A General Purpose Network Analysis and Graph Mining Library.
arXiv:1606.07550 [cs.SI]

[16] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo Durand, and Saman Amarasinghe.
2013. Halide: A Language and Compiler for Optimizing Parallelism, Locality, and Recomputation in Image Processing
Pipelines. SIGPLAN Not. 48, 6 (June 2013), 519–530. https://doi.org/10.1145/2499370.2462176

[17] Jason Redgrave, Albert Meixner, Nathan Goulding-Hotta, Artem Vasilyev, and Ofer Shacham. 2018. Pixel Visual Core:
Google’s Fully Programmable Image Vision and AI Processor For Mobile Devices. In Proc. IEEE Hot Chips Symp.(HCS).
1–18.

[18] Oguz Selvitopi, Saliya Ekanayake, Giulia Guidi, Georgios Pavlopoulos, Ariful Azad, and Aydin Buluc. 2020. Distributed
Many-to-Many Protein Sequence Alignment using Sparse Matrices. arXiv:2009.14467 [cs.DC]

[19] I. Simecek. 2009. Sparse Matrix Computations Using the Quadtree Storage Format. In 2009 11th International Symposium
on Symbolic and Numeric Algorithms for Scientific Computing. 168–173. https://doi.org/10.1109/SYNASC.2009.55

[20] William S. Song, Vitaliy Gleyzer, Alexei Lomakin, and Jeremy Kepner. 2016. Novel graph processor architecture,
prototype system, and results. 2016 IEEE High Performance Extreme Computing Conference (HPEC) (Sep 2016). https:
//doi.org/10.1109/hpec.2016.7761635

[21] Morten Sørensen, R. Glück, and Neil Jones. 1996. A positive supercompiler. Journal of Functional Programming 6 (11
1996), 811 – 838. https://doi.org/10.1017/S0956796800002008

[22] USA Timothy A. Davis, Texas A&M University. [n.d.]. Algorithm 9xx: SuiteSparse:GraphBLAS: graph algorithms
in the language of sparse linear algebra. https://people.engr.tamu.edu/davis/publications_files/toms_graphblas.pdf.
Accessed: 2021-06-06.

[23] Philip Wadler. 1990. Deforestation: transforming programs to eliminate trees. Theoretical Computer Science 73, 2 (1990),
231–248. https://doi.org/10.1016/0304-3975(90)90147-A

[24] Carl Yang, Aydin Buluc, and John D. Owens. 2020. GraphBLAST: A High-Performance Linear Algebra-based Graph
Framework on the GPU. arXiv:1908.01407 [cs.DC]

[25] Zhekai Zhang, Hanrui Wang, Song Han, and William J. Dally. 2020. SpArch: Efficient Architecture for Sparse Matrix
Multiplication. In 26th IEEE International Symposium on High Performance Computer Architecture (HPCA).

4

https://github.com/YaccConstructor/Distiller
https://www.tensorflow.org/xla?hl=en
https://doi.org/10.1109/MSPEC.2019.8701189
https://doi.org/10.1109/HPEC.2018.8547538
https://doi.org/10.1109/HPEC.2019.8916550
https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1007/978-3-642-11486-1_13
https://doi.org/10.1145/3140587.3062354
https://doi.org/10.1109/hpec.2017.8091098
https://arxiv.org/abs/1606.07550
https://doi.org/10.1145/2499370.2462176
https://arxiv.org/abs/2009.14467
https://doi.org/10.1109/SYNASC.2009.55
https://doi.org/10.1109/hpec.2016.7761635
https://doi.org/10.1109/hpec.2016.7761635
https://doi.org/10.1017/S0956796800002008
https://people.engr.tamu.edu/davis/publications_files/toms_graphblas.pdf
https://doi.org/10.1016/0304-3975(90)90147-A
https://arxiv.org/abs/1908.01407

	1 Introduction
	2 Solution
	3 Future work
	References

