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1 INTRODUCTION
Linear algebra is a great instrument for solving a wide variety of problems utilizing matrices and
vectors for data representation and analysis with the help of highly optimized routines. But in
reality matrices in many applications are often sparse, incurring both computational and storage
inefficiencies, requiring an unnecessarily large storage, occupied by zero elements, and a large
number of operations on zeroes, where the result is obviously known beforehand. The traditional
approach to address these inefficiencies is to compress the matrix and store only the non-zero
elements, and then operate only on the non-zero values. It makes the techniques of matrix com-
pressed representation and sparse linear algebra to be the effective way of tackling problems in
areas including but not limited to graph analysis [13], computational biology [18] and machine
learning [14].

GraphBLAS [3] standard defines sparse linear algebra building blocks useful to express algorithms
for already mentioned areas in a uniform way in terms of sparse matrix and vector operations over
some semiring. These include matrix/vector multiplication, element-wise operations (e-wise for
short), kronecker product, masking, i.e. taking a subset of elements that satisfies the mask or its
complement, and are sufficient to express a lot of algorithms, e.g. PageRank, Breadth-First-Search,
Sparse Deep Neural Network [6].

However sparse computations appear to have a low arithmetic-to-memory operations intensity,
meaning that the main bottleneck of sparse-algorithms is the sparse representation itself that
induces pointer-chasing. Thus, a number of optimizations have been identified [24], whose aim is
to reduce the intensity of memory accesses and the one considered in this work is fusion. Fusion
simply stands for removal of intermediate data structures, namely those that are first constructed
and then deconstructed. There are two types of fusion that we are interested in.
Mask fusion. Ahead-of-time masking could reduce the number of memory accesses in case of,

e.g., matrix-vector multiplication by taking only the elements of interest. In order to achieve such a
behavior, a mask should be fused (i.e. transformed into a single operation) with the corresponding
operation, for the operation to perform computations only for the elements in the mask. The
effect of masking in case of sparse matrix-dense vector multiplication could be seen in figure 1.
Ahead-of-time masking reduces the number of memory accesses from 8 to 3.

Kernel fusion. Kernel fusion is responsible for fusing arbitrary operations. In the case of loop-
based programming fusion simply stands for joining several loops into one to increase memory
locality and reduce the number of required iterations. It is a crucial technique in dense applications
and is usually followed by a stage of polyhedral analysis. This is extensively exploited in frameworks
like TensorFlow and its XLA compiler [2]. A motivating example for general fusion could be seen
in listing 11, which is a snippet (simplified for demonstration) from Luby’s maximal independent
set algorithm implementation [22]. As could be seen it is a series of e-wise matrix additions: two
consecutive element-wise operations could be fused into one, so new_members matrix creation and
further iterations are reduced.

Some general-purpose solutions exists that support fusion, e.g., [10] which are based on map/re-
duce semantics. But in order to support sparse operations they should be able to fuse across index
arithmetic, which is not the case. Also at the moment neither [5] nor [24] have adopted the fusion in

1The original excerpt is in C++, it is rewritten to ease the demonstration. Call-by-value is assumed.
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Fig. 1. Mask fusion example [24]

...
-- select node if its probability is > than all its active neighbors

-- @gt is '>' operation, @lor is logical or
let new_members = eWiseAdd gt prob neighbor_max

iset' = eWiseAdd lor iset new_members in

...

Listing 1. Excerpt from Luby’s maximal independent set algorithm implementation

their implementations. In this work we propose an approach to support fusion for such applications
and outline the overall solution design.

2 SOLUTION
The problem of intermediate data structures is natural for functional programming and a number of
approaches for fusion has been designed, namely partial evaluation, deforestation, supercompilation,
distillation [9, 12, 21, 23]. In this work we will focus on distillation since it is able to produce a
superlinear improvement for the program being optimized [9].

For succesful fusion the compressed representation should be fuseable, so it should avoid indexing
and be natural to functional paradigm. A quad-tree representation [19] looks promising in this
case. The implementation of this compressed representation as an algebraic data type could be
seen in listing 2, it recursively splits a matrix into four submatrices. Turning back to the successive
e-wise matrix additions example, distillation successfully fuses them into one operation where each
matrix is iterated only once as also could be seen in listing 2.

If we now define the notion of intermediate data structure as the number of times a constructor
term within case context is encountered during the reduction of the top-level term, i.e. the number
of times something is deconstructed with pattern-matching, we could see that the fusion also
produces a more effective program, as it could be seen in the table 1, where 𝑥/𝑦 are reductions, the
number of steps to reduce the term to its normal form, and the number of intermediate structures
respectively, the numbers at top are the orders of input matrices. Each example firstly was evaluated
using the interpreter that counts the number of reductions and intermediate structures. Then it
was distilled2 and evaluated again. Matrices/masks have been taken from [7], converted to q-tree
representation and embedded instead of free variables into the corresponding functions. The full
list of benchmarks could be found here [1].
It could be noted that case 𝑐 𝑒0 . . . 𝑒𝑛 , where 𝑐 is a constructor, essentially performs a memory

read, so the optimization reduces the number of eventual memory reads and corresponding writes
2The distiller from [9] was used
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Distilling Sparse Linear Algebra

-- @QNone stands for submatrix which elements are zeroes
data QTree a = QNone

| QVal a
| QNode (QTree a) (QTree a) (QTree a) (QTree a)

main = ...
let new_members = eWiseAdd gt prob neighbor_max

iset' = eWiseAdd lor iset new_members in
...

--gets fused into
main = ...

let iset' = case iset of
... -> case neighbor_max of

... -> case prob of ...
-- @new_members has been eliminated

Listing 2. Fusion by means of distillation

Function Description # of non-zeroes
101 102 103

E-wise successive
additions

Original 107 / 22 11293 / 1852 139851 / 20351
Distilled 44 / 14 6129 / 1433 89215 / 15061

Kronecker with masking Original 213 / 45 535125 / 92470 6968317 / 1220816
Distilled 108 / 25 367868 / 67110 3974610 / 867137
Table 1. Distillation results

as well. Another practical example is masking of a kronecker product, since kronecker product
performs more operations than matrix-vector multiplication, here it is a more representative
example that shows the benefits of masking-fusion. The benefit of optimization is up to 2x in terms
of reductions and up to 1.3x in terms of intermediate structures, hence it could be stated that
distillation is applicable to optimize sparse computations and could be able to speed up practical
algorithms like Luby’s maximal set. The future work and overall idea behind this is described in
the next section.

3 FUTUREWORK
The obvious disadvantage of this approach is that it requires a special domain-specific language
amenable to distillation, so it could hardly be integrated into existing implementations like [5, 24].
However, typical CPUs and GPUs are proven to be underutilized [7, 15, 20, 25], i.e., their computing
units do not achieve peak performance, suffering from the irregularity of memory accesses incurred
by sparsity, so a possible direction could be to design a domain-specific co-processor that is able to
execute this distillation-amenable language. Such an approach has found a successful application
in image processing [16, 17], programmable networks [11] and machine learning [2, 4].

Notably, in [8] a framework is proposed that is capable of transforming arbitraryHaskell programs
into hardware description. It provides datatype-specific memory spaces and divide-and-conquer
optimizations (since q-tree representation is divide-and-conquer by its natures, it is a good fit).
Each case 𝑐 𝑒0 . . . 𝑒𝑛 expression is generated as an explicit memory read of 𝑐 and hence distillation
is also optimizing the hardware in a sense. The resulting hardware is highly-parallel and pipelined,
so it could be a good counterpart to modern CPUs and GPUs.
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