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New concepts
⋗ Immutable data structures
⋗ Persistent data structures

Remarks
⋗ We can use old nodes (share) in new version of the data
structure

⋗ Non-persistent data structures are called ephemeral
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Linked List

Definition (Linked List)
Who knows?

Definition (List) [One of possible definitions]
A data structure such that from some predefined side (for example,
list head) deletion and insertion of element has complexity O(1)
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List Concatenation in the Imperative Paradigm

xs

0 1 2 ·

ys

3 4 5 ·
(before)

zs

0 1 2 3 4 5 ·
(after)

Concatenation of lists xs and ys in the imperative paradigm

⋗ Destroys argument lists xs and ys (one can’t use them further)
⋗ Complexity: O(1)
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Pure Functional Lists Concatenation

xs 0 1 2 · ys 3 4 5 ·
(before)

xs 0 1 2 · ys 3 4 5 ·

zs 0 1 2

(after)

Execution of zs = xs ++ ys in functional world

⋗ xs and ys remain intact
⋗ we copied a lot but the first list only
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Pure Functional Lists Concatenation — 2

How to implement concatenation ++ of lists xs and ys?
⋗ If xs is empty then ys is the answer
⋗ Otherwise xs consists of h as a head and tl as a tail then the
answer is a list with head h and tail tl++ys.

Complexity: O(length(xs))

1 (++) [] ys = ys
2 (++) (h:tl) ys = h : (tl ++ ys)

How to update the n-th list element?
1 update [] i y = error "i is greater than list length"
2 update x:xs 0 y = y:xs
3 update x:xs i y = x : update xs (i−1) y

⋗ O(n) . . . very sad ;(
⋗ We copy the element being modified and all elements that
have direct or indirect pointers to it
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Example: Trees

xs

d

b

a c

g

f h

xs ys

d

b

a c

g

f f

e

h

g

d

⋗ Usually, the number of nodes to be copied is at most log2 n
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On Concatenation Associativity

In theory list concatenation is associative

(((a1 ++ a2) ++ a3) ++ . . .++ an) ≡ (a1 ++ (a2 ++ (a3 ++ (. . .++ an))))

In practise left-had side is much slower than right-hand side

Note for developers
Sometimes, for an efficient implementation one need to redesign
algorithms in a way such that shorter lists are concatenated with
longer lists. Ideally, always concatenate one element with a list.
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On Amortized Time Analysis

Standard complexity notation O(·) – worst case estimation

But actually, we may have more freedom:
⋗ Let’s perform n+ 1 action
⋗ Most of actions will be “cheap”: O(1)
⋗ One “expensive” action: for example, O(n)
⋗ Standard assymptotic compexity: O(n)
⋗ Average complexity of performing n actions (amortized time

complexity) can be O(1) for an action

a =

∑n
i=1 ti
n

This additional freedom degree sometimes allows a simpler and
more efficient implementation to be designed
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Banker’s Method

Definition (Accumulated Savings)
A difference between total current amortized cost and total current
fair value

⋗ NB: accumulated savings must be non-negative
⋗ I.e. “expensive” operations may take place iff accumulated
savings are enough to cover theis additional cost

ai = ti + ci − c̄i
where ti — fair cost, ci — credit amount provided by action i,
c̄i — amount of credit spent by action i

⋗ Each credit unit must be allocated before being spent
⋗ Credit cannot be used twice
⋗
∑ ci ≥

∑ c̄i ⇒
∑ai ≥

∑ ti
⋗ Amortized compexity is n ∗O(f(n,m))⇔ ∀n.ai = O(f(n,m))

⇒ a =
∑n
i=1 ai
n =

n∗O(f(n,m))

n = O(f(n,m))
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Pure Functional Queues

Interface:
⋗ empty: queue -> bool
⋗ enqueue: queue * int

-> queue
⋗ head: queue -> int
⋗ tail: queue -> queue

Simplest implementation
Via a pair of lists, f and r
⋗ f (front) contains the head
elements of the queue in the
initial (correct) order,

⋗ r (reversed) consist of tail
elements in reverse order

For example, queue
=[1;2;3;4;5;6] can be
represented as two lists
f=[1;2;3] and r=[6;5;4]
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The Queue Invariant

Question: When to move elements from the front to reversed list?

Definition (Queue Invariant)
List f may become empty iff list r is also empty (i.e., the queue is
empty)

Otherwise head is O(n)
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Pure Functional Queue and Banker’s method

Definition (Invariant)
Each element in the tail list is associated with one credit unit

⋗ Each enqueue call performs the only real computational step
and emits edditional credit unit for an element in the tail list

amortized complexity is 2

⋗ tail, if no list inversion happend, preforms one step and
spends no credit units

amortized compelxity is 1

⋗ tail, if list reverse happends, performs (m+ 1) steps, where m
is a tail list length, and spends m credit units

amortized complexity is m+ 1 −m = 1
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Conclusion

⋗ In case of purely functional queue, function tail worst case
complexity is O(n) and amortized — O(1)

⋗ Good if one do not need persistency, and amortized
performance is good enough for the problem

⋗ Lazy evaluations + amortized compexity = persistent queues
with a very good amortized complexity
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Lazy Evaluations

Lazy Evaluations
Delays the evaluation of an expression until its value is needed
(non-strict evaluation)

Memoization of lazy evaluations
Ones the value of expression is needed, evaluate it and memoize
(remember, sharing) the result; If it will be needed further, just
return the memoized result
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Lazy Lists (Streams)

Definition (Stream)
is a list but evaluations of sublists are delayed

Example: Stream of all possible natural numbers

Notation
Add an element x to the tail xs: $Cons x xs
Empty stream: $Nil
Delay f: $f

Remark
Stream may be both finite and infinite;
One never knows until the end appears
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Example: Fibonacci Numbers
Consider function zip : stream × stream→ stream, which sums
streams element by element

A stream of Fibonacco numbers:
fibs ≡ $Cons(1,$Cons(1,zip(fibs,tail(fibs))))

1 1 1 1
1

1 1 2
1

1 1 2
1 2

1 1 2 3
1 2

and so on
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Banker’s Queue Improvement

Remark
This implementation has amortized complexity O(1) and is
persistent

1 Use streams instead of lists
2 Store stream lengths explicitly
3 Invariant: |f| > |r|

If streams f and r have the same length, define f as f++ reverse(r)

Reverse
⋗ Lazy evaluation ⇒ delayed until needed
⋗ Memoization ⇒ computed only ones
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Scheduling

Problem Statement
⋗ We produce n “cheap” steps
⋗ Then, one “expensive” step O(n)
⋗ Thus, we can only state amortized complexity

An Idea: scheduling
Instead of one “expensive” step let’s perform n smaller steps with
constant complexity. Performing each “cheap” step, we will also
perform one of this “smaller” steps.
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Real-time Queue

Reminder: banker’s queue: we relied on calculation of
f++ reverse(r)

Now let’s instead use a special function rotate

rotate(f,r,a) = f++ reverse(r) ++ a
Third parameter is an accomulator which stores partially computed
result of reverse(r)

Obviously
rotate(f,r, $Nil) = f++ reverse(r)
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When to Reorder the Queue?

Let’s reorder queue when |r| = |f|+ 1
This ratio will be maintained throughout the rebuilding

Let’s prove it by induction on the length of front |f|

Base:
rotate($Nil,$Cons(y,$Nil),a) ≡ $Nil++ reverse($Cons(y,$Nil)) ++ a

≡ $Cons(y,a)

Induction step:

rotate($Cons(x,f),$Cons(y,r),a)
≡ $Cons(x,f)++ reverse($Cons(y,r)) ++ a
≡ $Cons(x,f ++reverse($Cons(y,r)) ++a)
≡ $Cons(x,f ++reverse(r) ++$Cons(y,a))
≡ $Cons(x,rotate (f, r, $Cons(y,a)))
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Conclusion

Queue\ Operation enqueue head tail
Banker’s O(1)∗ O(1)∗ O(1)∗
Real-time O(1) O(1) O(1)

Amortized estimations are marked as c∗
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TODO

⋗ Sets?
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Left-oriented heap — 1

Priority Queue (or heap)
Data structure that supports efficient access to the minimum
element

Remark
Note order relation in the heap signature (unlike sets)

Left-oriented heap
⋗ leftist property: rank of any left subtree is not less than rank of
its right sister node

⋗ rank is a length of the right spane
⋗ Thus, right spane is a shortest path to a list
⋗ Implementation via heap-ordered trees, i.e. element in a node
is less or equal to all elements in subtrees

⋗ minimum is always in the root
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Left-oriented heap — 2
1 data Heap k a = Leaf | Node k a (Heap k a) (Heap k a)

1 data Heap k a = Leaf | Node k a (Heap k a) (Heap k a)
2

3 makeTree :: (Num k, Ord k) =>
4 a -> Heap k a -> Heap k a -> Heap k a
5 makeTree x a b
6 | rank a >= rank b = Node (rank b + 1) x a b
7 | otherwise = Node (rank a + 1) x b a

1 data Heap k a = Leaf | Node k a (Heap k a) (Heap k a)
2

3 makeTree :: (Num k, Ord k) =>
4 a -> Heap k a -> Heap k a -> Heap k a
5 makeTree x a b
6 | rank a >= rank b = Node (rank b + 1) x a b
7 | otherwise = Node (rank a + 1) x b a
8

9 merge :: (Num k, Ord k, Ord a) =>
10 Heap k a -> Heap k a -> Heap k a -- O(log2 n)
11 merge h Leaf = h
12 merge Leaf h = h
13 merge h1@(Node _ x a1 b1) h2@(Node _ y a2 b2)
14 | x <= y = makeTree x a1 merge b1 h2
15 | otherwise = makeTree y a2 merge h1 b2

1 data Heap k a = Leaf | Node k a (Heap k a) (Heap k a)
2

3 makeTree :: (Num k, Ord k) =>
4 a -> Heap k a -> Heap k a -> Heap k a
5 makeTree x a b
6 | rank a >= rank b = Node (rank b + 1) x a b
7 | otherwise = Node (rank a + 1) x b a
8

9 merge :: (Num k, Ord k, Ord a) =>
10 Heap k a -> Heap k a -> Heap k a -- O(log2 n)
11 merge h Leaf = h
12 merge Leaf h = h
13 merge h1@(Node _ x a1 b1) h2@(Node _ y a2 b2)
14 | x <= y = makeTree x a1 merge b1 h2
15 | otherwise = makeTree y a2 merge h1 b2
16

17 insert x h = merge (Node 1 x Leaf Leaf) h -- O(log2 n)
18 findMin (Node _ x _ _) = x -- O(1)
19 deleteMin (Node _ _ a b) = merge a b -- O(log2 n)
20 emptyHeap = Leaf
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Binominal Heap

Def [Binominal Tree] inductive
⋗ rank 0 — singleton node
⋗ rank r+ 1 is linking of two binominal trees of rank r such that
one if them becomes a left most child of another

Def [Binominal Tree] alternative
Binominal heap of rank r is a node with r descendants t1, . . . , tr:
∀i . rank(ti) = r − i

⋗ binominal tree of rank r has exactly 2r elements
TODO: picture 3.3 from page 30
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Binominal Tree

1 data Tree a = Node Int a [Tree a]

1 link t1@(Node r x1 c1) t2@(Node _ x2 c2)
2 | x1 <= x2 = Node (r+1) x1 (t2:c1)
3 | otherwise = Node (r+1) x2 (t1:c2)

Daniil Berezun Functional Data Structures



26

Binominal Heap — 1

1 type Heap a = [Tree a]

1 rank (Node r x c) = r
2 root (Node r x c) = x
3 insTree t [] = [t]
4 insTree t ts@(t':ts')
5 | rank t < rank t' = t:ts
6 | otherwise = insTree (link t t') ts'
7

8 insert x ts = insTree (Node 0 x []) ts
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Binominal Heap — 1

1 merge (t, []) = t
2 merge ([], t ) = t
3 merge (ts1@(t1:ts1'), ts2@(t2:ts2'))
4 | rank t1 < rank t2 = t1 : merge (ts1', ts2)
5 | rank t2 < rank t1 = merge (ts1, ts2')
6 | otherwise = insTree (link t1 t2)
7 (merge (ts1', ts2'))

1 removeMinTree [t] = (t, [])
2 removeMinTree (t:ts)
3 | root t <= root t' = (t , ts )
4 | otherwise = (t', t:ts)
5 where (t', ts') = removeMinTree ts
6

7 findMin ts = root t where (t, _) = removeMinTree ts
8

9 deleteMin ts = merge (reverse ts1, ts2) where
10 (Node _ x ts1, ts2) = removeMinTree ts
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RB-Trees — 1

1 data Colour = R | B
2 data Tree a = E | T Colour (Tree a) a (Tree a)
3

4 member x E = False
5 member x (T _ a y b)
6 | x < y = member x a
7 | x > y = member x b
8 | otherwise = True

1 insert x s = T B a y b where -- root is always black
2 ins E = T R E x E -- new node is red
3 ins s@(T colour a y b)
4 | x < y = balance colour (ins a) y b
5 | x > y = balance colour a y (ins b)
6 | otherwise = s
7 T _ a y b = ins s
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RB-Trees — 2

1 balance :: Colour -> Tree a -> a -> Tree a -> Tree a
2 balance B (T R (T R a x b) y c) z d
3 = T R (T B a x b) y (T B c z d)
4 balance B (T R a x (T R b y c)) z d
5 = T R (T B a x b) y (T B c z d)
6 balance B a x (T R (T R b y c) z d)
7 = T R (T B a x b) y (T B c z d)
8 balance B a x (T R b y (T R c z d))
9 = T R (T B a x b) y (T B c z d)

10 balance c t1 a t2 = T c t1 a t2
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z

x

a y

b c

d

x

a y

b z

c d

z

y

x

a b

c

d

x

a z

y

b c

d

y

x

a b

z

c d
⇒

⇒

⇒

⇒
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Balance (1/4)

1 balance :: Colour -> Tree a -> a -> Tree a -> Tree a
2 balance B (T R (T R a x b) y c) z d
3 = T R (T B a x b) y (T B c z d)
4 balance B (T R a x (T R b y c)) z d
5 = T R (T B a x b) y (T B c z d)
6 balance B a x (T R (T R b y c) z d)
7 = T R (T B a x b) y (T B c z d)
8 balance B a x (T R b y (T R c z d))
9 = T R (T B a x b) y (T B c z d)

10 balance c t1 a t2 = T c t1 a t2

z

y

x

a b

c

d
y

x

a b

z

c d

⇒
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Balance (2/4)

1 balance :: Colour -> Tree a -> a -> Tree a -> Tree a
2 balance B (T R (T R a x b) y c) z d
3 = T R (T B a x b) y (T B c z d)
4 balance B (T R a x (T R b y c)) z d
5 = T R (T B a x b) y (T B c z d)
6 balance B a x (T R (T R b y c) z d)
7 = T R (T B a x b) y (T B c z d)
8 balance B a x (T R b y (T R c z d))
9 = T R (T B a x b) y (T B c z d)

10 balance c t1 a t2 = T c t1 a t2

z

x

a y

b c

d
y

x

a b

z

c d

⇒
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Balance (3/4)

1 balance :: Colour -> Tree a -> a -> Tree a -> Tree a
2 balance B (T R (T R a x b) y c) z d
3 = T R (T B a x b) y (T B c z d)
4 balance B (T R a x (T R b y c)) z d
5 = T R (T B a x b) y (T B c z d)
6 balance B a x (T R (T R b y c) z d)
7 = T R (T B a x b) y (T B c z d)
8 balance B a x (T R b y (T R c z d))
9 = T R (T B a x b) y (T B c z d)

10 balance c t1 a t2 = T c t1 a t2

x

a z

y

b c

d

y

x

a b

z

c d

⇒
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Balance (4/4)

1 balance :: Colour -> Tree a -> a -> Tree a -> Tree a
2 balance B (T R (T R a x b) y c) z d
3 = T R (T B a x b) y (T B c z d)
4 balance B (T R a x (T R b y c)) z d
5 = T R (T B a x b) y (T B c z d)
6 balance B a x (T R (T R b y c) z d)
7 = T R (T B a x b) y (T B c z d)
8 balance B a x (T R b y (T R c z d))
9 = T R (T B a x b) y (T B c z d)

10 balance c t1 a t2 = T c t1 a t2

x

a y

b z

c d

y

x

a b

z

c d

⇒
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Questions?
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