On Functional Programming

Functional Data Structures

Daniil Berezun

New concepts

- > Immutable data structures
- > Persistent data structures

Remarks

- > We can use old nodes (share) in new version of the data structure
- > Non-persistent data structures are called ephemeral

Linked List

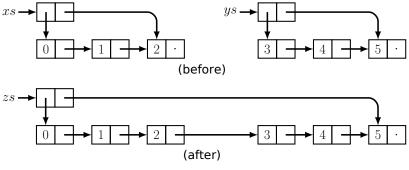
Definition (Linked List)

Who knows?

Definition (List) [One of possible definitions]

A data structure such that from some predefined side (for example, list head) deletion and insertion of element has complexity O(1)

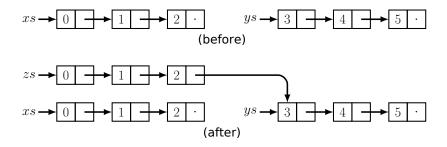
List Concatenation in the Imperative Paradigm



Concatenation of lists xs and ys in the imperative paradigm

- > Destroys argument lists xs and ys (one can't use them further)
- > Complexity: O(1)

Pure Functional Lists Concatenation



Execution of zs = xs ++ ys in functional world

- > xs and ys remain intact
- > we copied **a lot** but the first list only

Pure Functional Lists Concatenation — 2

How to implement concatenation ++ of lists xs and ys?

- > If xs is empty then ys is the answer
- > Otherwise xs consists of h as a head and tl as a tail then the answer is a list with head h and tail tl++ys.

Complexity: *O*(*length*(*xs*))

1

2

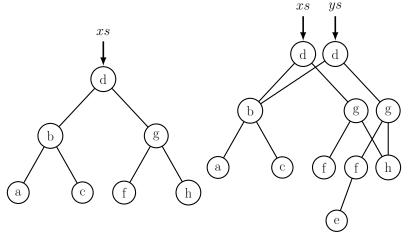
(++) [] ys = ys (++) (h:tl) ys = h : (tl ++ ys)

How to update the n-th list element?

1	update	[]	i	у	=	<pre>error "i is greater than list length"</pre>	
	update						
3	update	X:XS	i	у	=	x : update xs (i <mark>-</mark> 1) y	

- > O(n)... very sad ;(
- > We copy the element being modified **and** all elements that have direct or indirect pointers to it

Example: Trees



 $\,>\,$ Usually, the number of nodes to be copied is at most $\log_2 n$

In theory list concatenation is associative

 $(((a_1 + a_2) + a_3) + \ldots + a_n) \equiv (a_1 + (a_2 + (a_3 + (\ldots + a_n))))$

In practise left-had side is much slower than right-hand side

Note for developers

Sometimes, for an efficient implementation one need to redesign algorithms in a way such that shorter lists are concatenated with longer lists. Ideally, always concatenate one element with a list.

On Amortized Time Analysis

Standard complexity notation $O(\cdot)$ – worst case estimation

But actually, we may have more freedom:

- > Let's perform n + 1 action
- > Most of actions will be "cheap": O(1)
- > One "expensive" action: for example, O(n)
- > Standard assymptotic compexity: O(n)
- > Average complexity of performing n actions (*amortized time complexity*) can be O(1) for an action

$$a = \frac{\sum_{i=1}^{n} t_i}{n}$$

This additional freedom degree sometimes allows a simpler and more efficient implementation to be designed

Definition (Accumulated Savings)

A difference between total current amortized cost and total current fair value

- » NB: accumulated savings must be non-negative
- > I.e. "expensive" operations may take place iff accumulated savings are enough to cover theis additional cost

$$a_i = t_i + c_i - \bar{c}_i$$

where t_i — fair cost, c_i — credit amount provided by action i, \bar{c}_i — amount of credit spent by action i

- > Each credit unit must be allocated before being spent
- > Credit cannot be used twice
- > $\sum c_i \ge \sum \overline{c}_i \Rightarrow \sum a_i \ge \sum t_i$
- > Amortized compexity is $n * O(f(n,m)) \Leftrightarrow \forall n.a_i = O(f(n,m))$ $\Rightarrow a = \frac{\sum_{i=1}^n a_i}{n} = \frac{n * O(f(n,m))}{n} = O(f(n,m))$

Pure Functional Queues

Interface:

- > empty: queue -> bool
- > enqueue: queue * int
 -> queue
- > head: queue -> int
- > tail: queue -> queue

Simplest implementation

Via a pair of lists, f and r

- f (front) contains the head elements of the queue in the initial (correct) order,
- > r (reversed) consist of tail elements in reverse order

For example, queue =[1;2;3;4;5;6] can be represented as two lists f=[1;2;3] and r=[6;5;4]

Question: When to move elements from the front to reversed list?

Definition (Queue Invariant)

List f may become empty iff list r is also empty (i.e., the queue is empty)

Otherwise head is O(n)

Definition (Invariant)

Each element in the *tail* list is associated with one credit unit

- » Each enqueue call performs the only real computational step and emits edditional credit unit for an element in the tail list amortized complexity is 2
- > tail, if no list inversion happend, preforms one step and spends no credit units
 - amortized compelxity is 1
- > tail, if list reverse happends, performs (m + 1) steps, where m is a tail list length, and spends m credit units amortized complexity is m + 1 - m = 1

Conclusion

> In case of purely functional queue, function tail worst case complexity is O(n) and amortized — O(1)

> Good if one do not need persistency, and amortized performance is good enough for the problem

> Lazy evaluations + amortized compexity = persistent queues with a very good amortized complexity

Lazy Evaluations

Lazy Evaluations

Delays the evaluation of an expression until its value is needed (*non-strict evaluation*)

Memoization of lazy evaluations

Ones the value of expression is needed, evaluate it and *memoize* (remember, *sharing*) the result; If it will be needed further, just return the memoized result

Definition (Stream)

is a list but evaluations of sublists are delayed

Example: Stream of all possible natural numbers

Notation

Add an element x to the tail xs: \$Cons x xs Empty stream: \$Nil Delay f: \$f

Remark

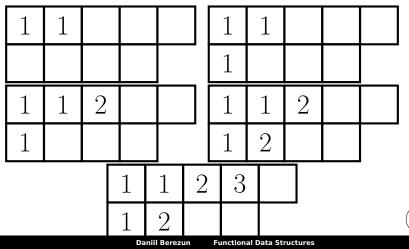
Stream may be both finite and infinite; One never knows until the end appears

Example: Fibonacci Numbers

Consider function zip : $stream \times stream \rightarrow stream$, which sums streams element by element

A stream of Fibonacco numbers:

fibs = \$Cons(1, \$Cons(1, zip(fibs, tail(fibs))))



Remark

This implementation has a mortized complexity $\mathcal{O}(1)$ and is persistent

- Use streams instead of lists
- Store stream lengths explicitly
- Invariant: $|\mathbf{f}| > |\mathbf{r}|$

If streams f and r have the same length, define f as f + reverse(r)

Reverse

- > Lazy evaluation \Rightarrow delayed until needed
- $\,>\,$ Memoization \Rightarrow computed only ones

Scheduling

Problem Statement

- » We produce n "cheap" steps
- > Then, one "expensive" step O(n)
- > Thus, we can only state amortized complexity

An Idea: scheduling

Instead of one "expensive" step let's perform *n* smaller steps with constant complexity. Performing each "cheap" step, we will also perform one of this "smaller" steps.

```
Reminder: banker's queue: we relied on calculation of f \ \# \ reverse(r)
```

Now let's instead use a special function rotate

rotate(f, r, a) = f + reverse(r) + a

Third parameter is an accomulator which stores partially computed result of reverse(r)

Obviously

rotate(f, r, \$Nil) = f + reverse(r)

When to Reorder the Queue?

Let's reorder queue when |r| = |f| + 1This ratio will be maintained throughout the rebuilding

Let's prove it by induction on the length of front |f|

Base:

```
rotate($Nil,$Cons(y,$Nil),a) = $Nil + reverse($Cons(y,$Nil)) + a
= $Cons(y,a)
```

Induction step:

```
rotate(\$Cons(x,f),\$Cons(y,r),a)

\equiv \$Cons(x,f) + reverse(\$Cons(y,r)) + a

\equiv \$Cons(x,f + reverse(\$Cons(y,r)) + a)

\equiv \$Cons(x,f + reverse(r) + \$Cons(y,a))

\equiv \$Cons(x,rotate(f, r, \$Cons(y,a)))
```


Conclusion

Queue Operation	enqueue	head	tail
Banker's	O(1)*	O(1)*	O(1)*
Real-time	O(1)	O(1)	O(1)

Amortized estimations are marked as c*

TODO

> Sets?

Priority Queue (or heap)

Data structure that supports efficient access to the minimum element

Remark

Note order relation in the heap signature (unlike sets)

Left-oriented heap

- > leftist property: rank of any left subtree is not less than rank of its right sister node
- > rank is a length of the right spane
- > Thus, right spane is a shortest path to a list
- > Implementation via *heap-ordered* trees, i.e. element in a node is less or equal to all elements in subtrees
- > minimum is always in the root

Left-oriented heap - 2

1	data Heap k a = Leaf Node k a (Heap k a) (Heap k a)
1	data Heap k a = Leaf Node k a (Heap k a) (Heap k a)
2	
3	<pre>makeTree :: (Num k, Ord k) =></pre>
4	a -> Heap ka -> Heap ka -> Heap ka
5	makeTree x a b
6	rank a >= rank b = Node (rank b + 1) x a b
7	otherwise = Node (rank a + 1) x b a
1	data Heap k a = Leaf Node k a (Heap k a) (Heap k a)
2	
3	<pre>makeTree :: (Num k, Ord k) =></pre>
4	a -> Heap ka -> Heap ka -> Heap ka
5	makeTree x a b
6	rank a >= rank b = Node (rank b + 1) x a b
7	otherwise = Node (rank a + 1) x b a
8	
9	merge :: (Num k, Ord k, Ord a) =>
10	Heap k a -> Heap k a -> Heap k a $O(\log_2 n)$
11	merge h Leaf = h
12	merge Leaf h = h

Binominal Heap

Def [Binominal Tree] inductive

- > rank 0 singleton node
- > rank r + 1 is *linking* of two binominal trees of rank r such that one if them becomes a left most child of another

Def [Binominal Tree] alternative

Binominal heap of rank *r* is a node with *r* descendants t_1, \ldots, t_r : $\forall i . rank(t_i) = r - i$

> binominal tree of rank r has exactly 2^r elements

TODO: picture 3.3 from page 30

Binominal Tree

1 data Tree a = Node Int a [Tree a]

1

2

3

link tl@(Node r x1 c1) t2@(Node _ x2 c2)
| x1 <= x2 = Node (r+1) x1 (t2:c1)
| otherwise = Node (r+1) x2 (t1:c2)</pre>

(25)

Binominal Heap — 1

```
type Heap a = [Tree a]
1
```

2

3

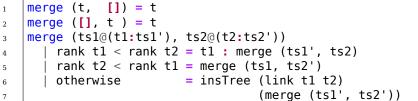
4

5

6 7

```
rank (Node r \times c) = r
1
   root (Node r \times c) = x
   insTree t [] = [t]
   insTree t ts@(t':ts')
        rank t < rank t' = t:ts</pre>
       otherwise = insTree (link t t') ts'
   insert x ts = insTree (Node 0 x []) ts
```

Binominal Heap - 1



```
removeMinTree [t] = (t, [])
removeMinTree (t:ts)
    | root t <= root t' = (t , ts )
    | otherwise = (t', t:ts)
    where (t', ts') = removeMinTree ts
findMin ts = root t where (t, _) = removeMinTree ts
deleteMin ts = merge (reverse ts1, ts2) where
    (Node _ x ts1, ts2) = removeMinTree ts</pre>
```

RB-Trees — 1

```
data Colour = R \mid B
1
   data Tree a = E | T Colour (Tree a) a (Tree a)
   member x E = False
   member x (T a y b)
      x < y = member x a
6
     | x > y = member x b
7
     d otherwise = True
   insert x s = T B a y b where -- root is always black
     ins E = T R E x E -- new node is red
     ins s@(T colour a y b)
        x < y = balance colour (ins a) y b
4
       | x > y = balance colour a y (ins b)
     otherwise = s
     T ay b = ins s
```

2 3

4

5

8

1

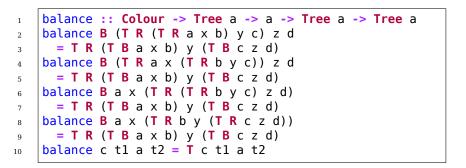
2

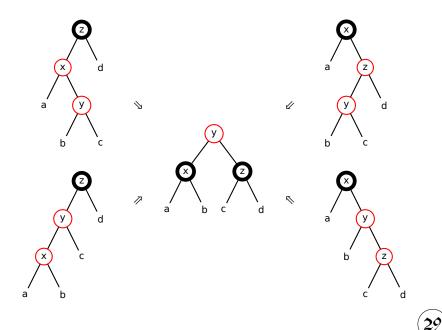
3

5

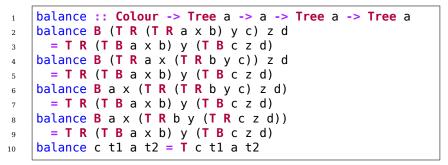
6

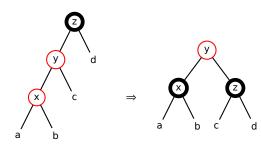
RB-Trees — 2



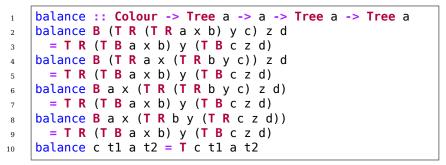


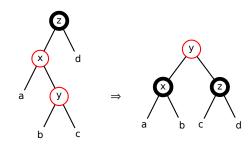
Balance (1/4)



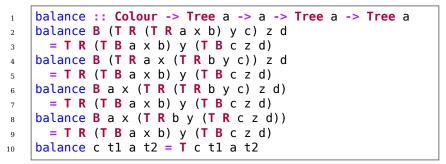


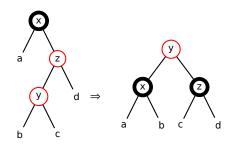
Balance (2/4)



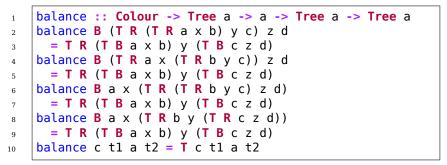


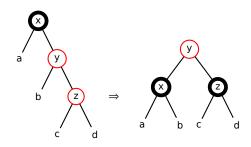
Balance (3/4)





Balance (4/4)





Questions?

