
On Functional Programming

Functional Data Structures

Daniil Berezun

2022

1

New concepts
⋗ Immutable data structures
⋗ Persistent data structures

Remarks
⋗ We can use old nodes (share) in new version of the data
structure

⋗ Non-persistent data structures are called ephemeral

Daniil Berezun Functional Data Structures

2

Linked List

Definition (Linked List)
Who knows?

Definition (List) [One of possible definitions]
A data structure such that from some predefined side (for example,
list head) deletion and insertion of element has complexity O(1)

Daniil Berezun Functional Data Structures

3

List Concatenation in the Imperative Paradigm

xs

0 1 2 ·

ys

3 4 5 ·
(before)

zs

0 1 2 3 4 5 ·
(after)

Concatenation of lists xs and ys in the imperative paradigm

⋗ Destroys argument lists xs and ys (one can’t use them further)
⋗ Complexity: O(1)

Daniil Berezun Functional Data Structures

4

Pure Functional Lists Concatenation

xs 0 1 2 · ys 3 4 5 ·
(before)

xs 0 1 2 · ys 3 4 5 ·

zs 0 1 2

(after)

Execution of zs = xs ++ ys in functional world

⋗ xs and ys remain intact
⋗ we copied a lot but the first list only

Daniil Berezun Functional Data Structures

5

Pure Functional Lists Concatenation — 2

How to implement concatenation ++ of lists xs and ys?
⋗ If xs is empty then ys is the answer
⋗ Otherwise xs consists of h as a head and tl as a tail then the
answer is a list with head h and tail tl++ys.

Complexity: O(length(xs))

1 (++) [] ys = ys
2 (++) (h:tl) ys = h : (tl ++ ys)

How to update the n-th list element?
1 update [] i y = error "i is greater than list length"
2 update x:xs 0 y = y:xs
3 update x:xs i y = x : update xs (i−1) y

⋗ O(n) . . . very sad ;(
⋗ We copy the element being modified and all elements that
have direct or indirect pointers to it

Daniil Berezun Functional Data Structures

6

Example: Trees

xs

d

b

a c

g

f h

xs ys

d

b

a c

g

f f

e

h

g

d

⋗ Usually, the number of nodes to be copied is at most log2 n

Daniil Berezun Functional Data Structures

7

On Concatenation Associativity

In theory list concatenation is associative

(((a1 ++ a2) ++ a3) ++ . . .++ an) ≡ (a1 ++ (a2 ++ (a3 ++ (. . .++ an))))

In practise left-had side is much slower than right-hand side

Note for developers
Sometimes, for an efficient implementation one need to redesign
algorithms in a way such that shorter lists are concatenated with
longer lists. Ideally, always concatenate one element with a list.

Daniil Berezun Functional Data Structures

8

On Amortized Time Analysis

Standard complexity notation O(·) – worst case estimation

But actually, we may have more freedom:
⋗ Let’s perform n+ 1 action
⋗ Most of actions will be “cheap”: O(1)
⋗ One “expensive” action: for example, O(n)
⋗ Standard assymptotic compexity: O(n)
⋗ Average complexity of performing n actions (amortized time

complexity) can be O(1) for an action

a =

∑n
i=1 ti
n

This additional freedom degree sometimes allows a simpler and
more efficient implementation to be designed

Daniil Berezun Functional Data Structures

9

Banker’s Method

Definition (Accumulated Savings)
A difference between total current amortized cost and total current
fair value

⋗ NB: accumulated savings must be non-negative
⋗ I.e. “expensive” operations may take place iff accumulated
savings are enough to cover theis additional cost

ai = ti + ci − c̄i
where ti — fair cost, ci — credit amount provided by action i,
c̄i — amount of credit spent by action i

⋗ Each credit unit must be allocated before being spent
⋗ Credit cannot be used twice
⋗
∑ ci ≥

∑ c̄i ⇒
∑ai ≥

∑ ti
⋗ Amortized compexity is n ∗O(f(n,m))⇔ ∀n.ai = O(f(n,m))

⇒ a =
∑n
i=1 ai
n =

n∗O(f(n,m))

n = O(f(n,m))

Daniil Berezun Functional Data Structures

10

Pure Functional Queues

Interface:
⋗ empty: queue -> bool
⋗ enqueue: queue * int

-> queue
⋗ head: queue -> int
⋗ tail: queue -> queue

Simplest implementation
Via a pair of lists, f and r
⋗ f (front) contains the head
elements of the queue in the
initial (correct) order,

⋗ r (reversed) consist of tail
elements in reverse order

For example, queue
=[1;2;3;4;5;6] can be
represented as two lists
f=[1;2;3] and r=[6;5;4]

Daniil Berezun Functional Data Structures

11

The Queue Invariant

Question: When to move elements from the front to reversed list?

Definition (Queue Invariant)
List f may become empty iff list r is also empty (i.e., the queue is
empty)

Otherwise head is O(n)

Daniil Berezun Functional Data Structures

12

Pure Functional Queue and Banker’s method

Definition (Invariant)
Each element in the tail list is associated with one credit unit

⋗ Each enqueue call performs the only real computational step
and emits edditional credit unit for an element in the tail list

amortized complexity is 2

⋗ tail, if no list inversion happend, preforms one step and
spends no credit units

amortized compelxity is 1

⋗ tail, if list reverse happends, performs (m+ 1) steps, where m
is a tail list length, and spends m credit units

amortized complexity is m+ 1 −m = 1

Daniil Berezun Functional Data Structures

13

Conclusion

⋗ In case of purely functional queue, function tail worst case
complexity is O(n) and amortized — O(1)

⋗ Good if one do not need persistency, and amortized
performance is good enough for the problem

⋗ Lazy evaluations + amortized compexity = persistent queues
with a very good amortized complexity

Daniil Berezun Functional Data Structures

14

Lazy Evaluations

Lazy Evaluations
Delays the evaluation of an expression until its value is needed
(non-strict evaluation)

Memoization of lazy evaluations
Ones the value of expression is needed, evaluate it and memoize
(remember, sharing) the result; If it will be needed further, just
return the memoized result

Daniil Berezun Functional Data Structures

15

Lazy Lists (Streams)

Definition (Stream)
is a list but evaluations of sublists are delayed

Example: Stream of all possible natural numbers

Notation
Add an element x to the tail xs: $Cons x xs
Empty stream: $Nil
Delay f: $f

Remark
Stream may be both finite and infinite;
One never knows until the end appears

Daniil Berezun Functional Data Structures

16

Example: Fibonacci Numbers
Consider function zip : stream × stream→ stream, which sums
streams element by element

A stream of Fibonacco numbers:
fibs ≡ $Cons(1,$Cons(1,zip(fibs,tail(fibs))))

1 1 1 1
1

1 1 2
1

1 1 2
1 2

1 1 2 3
1 2

and so on
Daniil Berezun Functional Data Structures

17

Banker’s Queue Improvement

Remark
This implementation has amortized complexity O(1) and is
persistent

1 Use streams instead of lists
2 Store stream lengths explicitly
3 Invariant: |f| > |r|

If streams f and r have the same length, define f as f++ reverse(r)

Reverse
⋗ Lazy evaluation ⇒ delayed until needed
⋗ Memoization ⇒ computed only ones

Daniil Berezun Functional Data Structures

18

Scheduling

Problem Statement
⋗ We produce n “cheap” steps
⋗ Then, one “expensive” step O(n)
⋗ Thus, we can only state amortized complexity

An Idea: scheduling
Instead of one “expensive” step let’s perform n smaller steps with
constant complexity. Performing each “cheap” step, we will also
perform one of this “smaller” steps.

Daniil Berezun Functional Data Structures

19

Real-time Queue

Reminder: banker’s queue: we relied on calculation of
f++ reverse(r)

Now let’s instead use a special function rotate

rotate(f,r,a) = f++ reverse(r) ++ a
Third parameter is an accomulator which stores partially computed
result of reverse(r)

Obviously
rotate(f,r, $Nil) = f++ reverse(r)

Daniil Berezun Functional Data Structures

20

When to Reorder the Queue?

Let’s reorder queue when |r| = |f|+ 1
This ratio will be maintained throughout the rebuilding

Let’s prove it by induction on the length of front |f|

Base:
rotate($Nil,$Cons(y,$Nil),a) ≡ $Nil++ reverse($Cons(y,$Nil)) ++ a

≡ $Cons(y,a)

Induction step:

rotate($Cons(x,f),$Cons(y,r),a)
≡ $Cons(x,f)++ reverse($Cons(y,r)) ++ a
≡ $Cons(x,f ++reverse($Cons(y,r)) ++a)
≡ $Cons(x,f ++reverse(r) ++$Cons(y,a))
≡ $Cons(x,rotate (f, r, $Cons(y,a)))

Daniil Berezun Functional Data Structures

21

Conclusion

Queue\ Operation enqueue head tail
Banker’s O(1)∗ O(1)∗ O(1)∗
Real-time O(1) O(1) O(1)

Amortized estimations are marked as c∗

Daniil Berezun Functional Data Structures

21

TODO

⋗ Sets?

Daniil Berezun Functional Data Structures

22

Left-oriented heap — 1

Priority Queue (or heap)
Data structure that supports efficient access to the minimum
element

Remark
Note order relation in the heap signature (unlike sets)

Left-oriented heap
⋗ leftist property: rank of any left subtree is not less than rank of
its right sister node

⋗ rank is a length of the right spane
⋗ Thus, right spane is a shortest path to a list
⋗ Implementation via heap-ordered trees, i.e. element in a node
is less or equal to all elements in subtrees

⋗ minimum is always in the root

Daniil Berezun Functional Data Structures

23

Left-oriented heap — 2
1 data Heap k a = Leaf | Node k a (Heap k a) (Heap k a)

1 data Heap k a = Leaf | Node k a (Heap k a) (Heap k a)
2

3 makeTree :: (Num k, Ord k) =>
4 a -> Heap k a -> Heap k a -> Heap k a
5 makeTree x a b
6 | rank a >= rank b = Node (rank b + 1) x a b
7 | otherwise = Node (rank a + 1) x b a

1 data Heap k a = Leaf | Node k a (Heap k a) (Heap k a)
2

3 makeTree :: (Num k, Ord k) =>
4 a -> Heap k a -> Heap k a -> Heap k a
5 makeTree x a b
6 | rank a >= rank b = Node (rank b + 1) x a b
7 | otherwise = Node (rank a + 1) x b a
8

9 merge :: (Num k, Ord k, Ord a) =>
10 Heap k a -> Heap k a -> Heap k a -- O(log2 n)
11 merge h Leaf = h
12 merge Leaf h = h
13 merge h1@(Node _ x a1 b1) h2@(Node _ y a2 b2)
14 | x <= y = makeTree x a1 merge b1 h2
15 | otherwise = makeTree y a2 merge h1 b2

1 data Heap k a = Leaf | Node k a (Heap k a) (Heap k a)
2

3 makeTree :: (Num k, Ord k) =>
4 a -> Heap k a -> Heap k a -> Heap k a
5 makeTree x a b
6 | rank a >= rank b = Node (rank b + 1) x a b
7 | otherwise = Node (rank a + 1) x b a
8

9 merge :: (Num k, Ord k, Ord a) =>
10 Heap k a -> Heap k a -> Heap k a -- O(log2 n)
11 merge h Leaf = h
12 merge Leaf h = h
13 merge h1@(Node _ x a1 b1) h2@(Node _ y a2 b2)
14 | x <= y = makeTree x a1 merge b1 h2
15 | otherwise = makeTree y a2 merge h1 b2
16

17 insert x h = merge (Node 1 x Leaf Leaf) h -- O(log2 n)
18 findMin (Node _ x _ _) = x -- O(1)
19 deleteMin (Node _ _ a b) = merge a b -- O(log2 n)
20 emptyHeap = Leaf

Daniil Berezun Functional Data Structures

24

Binominal Heap

Def [Binominal Tree] inductive
⋗ rank 0 — singleton node
⋗ rank r+ 1 is linking of two binominal trees of rank r such that
one if them becomes a left most child of another

Def [Binominal Tree] alternative
Binominal heap of rank r is a node with r descendants t1, . . . , tr:
∀i . rank(ti) = r − i

⋗ binominal tree of rank r has exactly 2r elements
TODO: picture 3.3 from page 30

Daniil Berezun Functional Data Structures

25

Binominal Tree

1 data Tree a = Node Int a [Tree a]

1 link t1@(Node r x1 c1) t2@(Node _ x2 c2)
2 | x1 <= x2 = Node (r+1) x1 (t2:c1)
3 | otherwise = Node (r+1) x2 (t1:c2)

Daniil Berezun Functional Data Structures

26

Binominal Heap — 1

1 type Heap a = [Tree a]

1 rank (Node r x c) = r
2 root (Node r x c) = x
3 insTree t [] = [t]
4 insTree t ts@(t':ts')
5 | rank t < rank t' = t:ts
6 | otherwise = insTree (link t t') ts'
7

8 insert x ts = insTree (Node 0 x []) ts

Daniil Berezun Functional Data Structures

27

Binominal Heap — 1

1 merge (t, []) = t
2 merge ([], t) = t
3 merge (ts1@(t1:ts1'), ts2@(t2:ts2'))
4 | rank t1 < rank t2 = t1 : merge (ts1', ts2)
5 | rank t2 < rank t1 = merge (ts1, ts2')
6 | otherwise = insTree (link t1 t2)
7 (merge (ts1', ts2'))

1 removeMinTree [t] = (t, [])
2 removeMinTree (t:ts)
3 | root t <= root t' = (t , ts)
4 | otherwise = (t', t:ts)
5 where (t', ts') = removeMinTree ts
6

7 findMin ts = root t where (t, _) = removeMinTree ts
8

9 deleteMin ts = merge (reverse ts1, ts2) where
10 (Node _ x ts1, ts2) = removeMinTree ts

Daniil Berezun Functional Data Structures

28

RB-Trees — 1

1 data Colour = R | B
2 data Tree a = E | T Colour (Tree a) a (Tree a)
3

4 member x E = False
5 member x (T _ a y b)
6 | x < y = member x a
7 | x > y = member x b
8 | otherwise = True

1 insert x s = T B a y b where -- root is always black
2 ins E = T R E x E -- new node is red
3 ins s@(T colour a y b)
4 | x < y = balance colour (ins a) y b
5 | x > y = balance colour a y (ins b)
6 | otherwise = s
7 T _ a y b = ins s

Daniil Berezun Functional Data Structures

29

RB-Trees — 2

1 balance :: Colour -> Tree a -> a -> Tree a -> Tree a
2 balance B (T R (T R a x b) y c) z d
3 = T R (T B a x b) y (T B c z d)
4 balance B (T R a x (T R b y c)) z d
5 = T R (T B a x b) y (T B c z d)
6 balance B a x (T R (T R b y c) z d)
7 = T R (T B a x b) y (T B c z d)
8 balance B a x (T R b y (T R c z d))
9 = T R (T B a x b) y (T B c z d)

10 balance c t1 a t2 = T c t1 a t2

Daniil Berezun Functional Data Structures

29

z

x

a y

b c

d

x

a y

b z

c d

z

y

x

a b

c

d

x

a z

y

b c

d

y

x

a b

z

c d
⇒

⇒

⇒

⇒

Daniil Berezun Functional Data Structures

30

Balance (1/4)

1 balance :: Colour -> Tree a -> a -> Tree a -> Tree a
2 balance B (T R (T R a x b) y c) z d
3 = T R (T B a x b) y (T B c z d)
4 balance B (T R a x (T R b y c)) z d
5 = T R (T B a x b) y (T B c z d)
6 balance B a x (T R (T R b y c) z d)
7 = T R (T B a x b) y (T B c z d)
8 balance B a x (T R b y (T R c z d))
9 = T R (T B a x b) y (T B c z d)

10 balance c t1 a t2 = T c t1 a t2

z

y

x

a b

c

d
y

x

a b

z

c d

⇒

Daniil Berezun Functional Data Structures

31

Balance (2/4)

1 balance :: Colour -> Tree a -> a -> Tree a -> Tree a
2 balance B (T R (T R a x b) y c) z d
3 = T R (T B a x b) y (T B c z d)
4 balance B (T R a x (T R b y c)) z d
5 = T R (T B a x b) y (T B c z d)
6 balance B a x (T R (T R b y c) z d)
7 = T R (T B a x b) y (T B c z d)
8 balance B a x (T R b y (T R c z d))
9 = T R (T B a x b) y (T B c z d)

10 balance c t1 a t2 = T c t1 a t2

z

x

a y

b c

d
y

x

a b

z

c d

⇒

Daniil Berezun Functional Data Structures

32

Balance (3/4)

1 balance :: Colour -> Tree a -> a -> Tree a -> Tree a
2 balance B (T R (T R a x b) y c) z d
3 = T R (T B a x b) y (T B c z d)
4 balance B (T R a x (T R b y c)) z d
5 = T R (T B a x b) y (T B c z d)
6 balance B a x (T R (T R b y c) z d)
7 = T R (T B a x b) y (T B c z d)
8 balance B a x (T R b y (T R c z d))
9 = T R (T B a x b) y (T B c z d)

10 balance c t1 a t2 = T c t1 a t2

x

a z

y

b c

d

y

x

a b

z

c d

⇒

Daniil Berezun Functional Data Structures

33

Balance (4/4)

1 balance :: Colour -> Tree a -> a -> Tree a -> Tree a
2 balance B (T R (T R a x b) y c) z d
3 = T R (T B a x b) y (T B c z d)
4 balance B (T R a x (T R b y c)) z d
5 = T R (T B a x b) y (T B c z d)
6 balance B a x (T R (T R b y c) z d)
7 = T R (T B a x b) y (T B c z d)
8 balance B a x (T R b y (T R c z d))
9 = T R (T B a x b) y (T B c z d)

10 balance c t1 a t2 = T c t1 a t2

x

a y

b z

c d

y

x

a b

z

c d

⇒

Daniil Berezun Functional Data Structures

33

Questions?

Daniil Berezun Functional Data Structures

