On Functional Programming

Functional Data Structures

Danill Berezun

New concepts
> Immutable data structures
> Persistent data structures

Remarks

> We can use old nodes (share) in new version of the data structure
> Non-persistent data structures are called ephemeral

Linked List

Definition (Linked List)

Who knows?

Definition (List) [One of possible definitions]
A data structure such that from some predefined side (for example, list head) deletion and insertion of element has complexity $O(1)$

List Concatenation in the Imperative Paradigm

Concatenation of lists xs and xs in the imperative paradigm
\rightarrow Destroys argument lists xs and xs (one can't use them further)
$>$ Complexity: $O(1)$

Pure Functional Lists Concatenation

Execution of $z s=x s++y s$ in functional world
$>x s$ and gs remain intact
\rightarrow we copied a lot but the first list only

Pure Functional Lists Concatenation - 2

How to implement concatenation ++ of lists xs and ms?
$>$ If xs is empty then yo is the answer
$>$ Otherwise xs consists of h as a head and tl as a tail then the answer is a list with head h and tail $\mathrm{tl}++\mathrm{ys}$.
Complexity: O(length(xs))
(+) [] es = xs
(+) (h:tl) es = h : (tl + es)

How to update the n-th list element?

```
update [] i y = error "i is greater than list length"
update x:xs 0 y = y:xs
update x:xs i y = x : update xs (i\boxminus1) y
```

$\rightarrow O(n) \ldots$ very sad ;(
$>$ We copy the element being modified and all elements that have direct or indirect pointers to it

Example: Trees

\gtrdot Usually, the number of nodes to be copied is at most $\log _{2} n$

On Concatenation Associativity

In theory list concatenation is associative

$$
\left(\left(\left(a_{1}+a_{2}\right)+a_{3}\right)+\ldots+a_{n}\right) \equiv\left(a_{1}+\left(a_{2}+\left(a_{3}+\left(\ldots+a_{n}\right)\right)\right)\right)
$$

In practise left-had side is much slower than right-hand side

Note for developers
Sometimes, for an efficient implementation one need to redesign algorithms in a way such that shorter lists are concatenated with longer lists. Ideally, always concatenate one element with a list.

On Amortized Time Analysis

Standard complexity notation $O(\cdot)$ - worst case estimation

But actually, we may have more freedom:
> Let's perform $n+1$ action
$>$ Most of actions will be "cheap": $O(1)$
$>$ One "expensive" action: for example, $O(n)$
$>$ Standard assymptotic compexity: $O(n)$
$>$ Average complexity of performing n actions (amortized time complexity) can be $O(1)$ for an action

$$
a=\frac{\sum_{i=1}^{n} t_{i}}{n}
$$

This additional freedom degree sometimes allows a simpler and more efficient implementation to be designed

Banker's Method

Definition (Accumulated Savings)

A difference between total current amortized cost and total current fair value
\rightarrow NB: accumulated savings must be non-negative
$>$ I.e. "expensive" operations may take place iff accumulated savings are enough to cover theis additional cost

$$
a_{i}=t_{i}+c_{i}-\bar{c}_{i}
$$

where t_{i} - fair cost, c_{i} - credit amount provided by action i, \bar{c}_{i} - amount of credit spent by action i
\rightarrow Each credit unit must be allocated before being spent
\rightarrow Credit cannot be used twice
$\rightarrow \sum c_{i} \geq \sum \bar{c}_{i} \Rightarrow \sum a_{i} \geq \sum t_{i}$
$>$ Amortized complexity is $n * O(f(n, m)) \Leftrightarrow \forall n \cdot a_{i}=O(f(n, m))$
$\Rightarrow a=\frac{\sum_{i=1}^{n} a_{i}}{n}=\frac{n * O(f(n, m))}{n}=O(f(n, m))$

Pure Functional Queues

Interface:
> empty: queue -> bool
> enqueue: queue * int -> queue
> head: queue -> int
> tail: queue -> queue

Simplest implementation

Via a pair of lists, f and r
$>f$ (front) contains the head elements of the queue in the initial (correct) order,
$>r$ (reversed) consist of tail elements in reverse order

For example, queue $=[1 ; 2 ; 3 ; 4 ; 5 ; 6]$ can be represented as two lists $f=[1 ; 2 ; 3]$ and $r=[6 ; 5 ; 4]$

The Queue Invariant

Question: When to move elements from the front to reversed list?

Definition (Queue Invariant)

List f may become empty iff list r is also empty (i.e., the queue is empty)

Otherwise head is $O(n)$

Pure Functional Queue and Banker's method

Definition (Invariant)

Each element in the tail list is associated with one credit unit
> Each enqueue call performs the only real computational step and emits edditional credit unit for an element in the tail list amortized complexity is 2
$>$ tail, if no list inversion happend, preforms one step and spends no credit units
amortized compelxity is 1
\rightarrow tail, if list reverse happends, performs $(m+1)$ steps, where m is a tail list length, and spends m credit units
amortized complexity is $m+1-m=1$

Conclusion

$>$ In case of purely functional queue, function tail worst case complexity is $O(n)$ and amortized $-O(1)$
> Good if one do not need persistency, and amortized performance is good enough for the problem
> Lazy evaluations + amortized compexity = persistent queues with a very good amortized complexity

Lazy Evaluations

Lazy Evaluations

Delays the evaluation of an expression until its value is needed (non-strict evaluation)

Memoization of lazy evaluations
Ones the value of expression is needed, evaluate it and memoize (remember, sharing) the result; If it will be needed further, just return the memoized result

Lazy Lists (Streams)

Definition (Stream)

is a list but evaluations of sublists are delayed
Example: Stream of all possible natural numbers

Notation

Add an element x to the tail x s: $\$$ Cons x xs
Empty stream: $\$ \mathrm{Nil}$
Delay $f: \$ f$

Remark

Stream may be both finite and infinite;
One never knows until the end appears

Example: Fibonacci Numbers

Consider function zip : stream \times stream \rightarrow stream, which sums streams element by element

A stream of Fibonacco numbers:
fibs \equiv \$Cons(1,\$Cons(1,zip(fibs,tail(fibs))))

Banker's Queue Improvement

Remark

This implementation has amortized complexity $O(1)$ and is persistent
(1) Use streams instead of lists
(2) Store stream lengths explicitly
(3) Invariant: $|\mathrm{f}|>|\mathrm{r}|$

If streams f and r have the same length, define f as $f+r e v e r s e(r)$

Reverse
$>$ Lazy evaluation \Rightarrow delayed until needed
$>$ Memoization \Rightarrow computed only ones

Scheduling

Problem Statement

> We produce n "cheap" steps
\rightarrow Then, one "expensive" step $O(n)$
\rightarrow Thus, we can only state amortized complexity

An Idea: scheduling

Instead of one "expensive" step let's perform n smaller steps with constant complexity. Performing each "cheap" step, we will also perform one of this "smaller" steps.

Real-time Queue

Reminder: banker's queue: we relied on calculation of $\mathrm{f}+$ reverse(r)

Now let's instead use a special function rotate

$$
\operatorname{rotate}(f, r, a)=f+r e v e r s e(r)+a
$$

Third parameter is an accomulator which stores partially computed result of reverse(r)

Obviously

$$
\operatorname{rotate}(\mathrm{f}, \mathrm{r}, \$ N i l)=\mathrm{f}+\operatorname{reverse}(\mathrm{r})
$$

When to Reorder the Queue?

Let's reorder queue when $|r|=|f|+1$
This ratio will be maintained throughout the rebuilding

Let's prove it by induction on the length of front |f|
Base:
rotate $(\$ N i l, \$ \operatorname{Cons}(\mathrm{y}, \$ \mathrm{Nil}), a) \equiv \$ N i l+r e v e r s e(\$ \operatorname{Cons}(\mathrm{y}, \$ \mathrm{Nil}))+a$ $\equiv \$$ Cons (y, a)

Induction step:

$$
\begin{aligned}
\text { rotate } & (\$ \operatorname{Cons}(x, f), \$ \operatorname{Cons}(y, r), a) \\
& \equiv \$ \operatorname{Cons}(x, f)+\operatorname{reverse}(\$ \operatorname{Cons}(y, r))+a \\
& \equiv \$ \operatorname{Cons}(x, f+\operatorname{reverse}(\$ \operatorname{Cons}(y, r))+a) \\
& \equiv \$ \operatorname{Cons}(x, f+\operatorname{reverse}(r)+\$ \operatorname{Cons}(y, a)) \\
& \equiv \$ \operatorname{Cons}(x, \operatorname{rotate}(f, r, \$ \operatorname{Cons}(y, a)))
\end{aligned}
$$

Conclusion

Queue \backslash Operation	enqueue	head	tail
Banker's	$\mathrm{O}(1)^{*}$	$\mathrm{O}(1)^{*}$	$\mathrm{O}(1)^{*}$
Real-time	$\mathrm{O}(1)$	$\mathrm{O}(1)$	$\mathrm{O}(1)$

Amortized estimations are marked as c*

TODO
> Sets?
(2I)

Left-oriented heap - 1

Priority Queue (or heap)

Data structure that supports efficient access to the minimum element

Remark

Note order relation in the heap signature (unlike sets)

Left-oriented heap

> leftist property: rank of any left subtree is not less than rank of its right sister node
$>$ rank is a length of the right spane
$>$ Thus, right spane is a shortest path to a list
> Implementation via heap-ordered trees, i.e. element in a node is less or equal to all elements in subtrees
\rightarrow minimum is always in the root

Binominal Heap

Def [Binominal Tree] inductive

\rightarrow rank 0 - singleton node
$>$ rank $r+1$ is linking of two binominal trees of rank r such that one if them becomes a left most child of another

Def [Binominal Tree] alternative

Binominal heap of rank r is a node with r descendants t_{1}, \ldots, t_{r} : $\forall i . \operatorname{rank}\left(t_{i}\right)=r-i$
$>$ binominal tree of rank r has exactly 2^{r} elements
TODO: picture 3.3 from page 30

Binominal Tree

data Tree a = Node Int a [Tree a]

```
link t1@(Node r x1 c1) t2@(Node _ x2 c2)
    | x1 <= x2 = Node (r+1) x1 (t2 :c1)
    | otherwise = Node (r+1) x2 (t1:c2)
```


Binominal Heap - 1

type Heap a = [Tree a]

```
rank (Node r x c) \(=r\)
root (Node r x c) \(=\mathrm{x}\)
insTree t [] = [t]
insTree t ts@(t':ts')
    | rank t < rank t' = t:ts
    | otherwise \(=\) insTree (link t t') ts'
insert x ts = insTree (Node \(0 \times[]\) ) ts
```


Binominal Heap - 1

```
merge (t, []) = t
merge ([], t ) = t
merge (ts1@(t1:ts1'), ts2@(t2:ts2'))
        rank t1 < rank t2 = t1 : merge (ts1', ts2)
    rank t2 < rank t1 = merge (ts1, ts2')
    otherwise = insTree (link t1 t2)
                                    (merge (ts1', ts2'))
```

```
removeMinTree [t] = (t, [])
removeMinTree (t:ts)
    | root t <= root t' = ( t , ts )
    otherwise \(=(t ', t: t s)\)
    where (t', ts') = removeMinTree ts
```

findMin ts = root t where (t, \quad _) = removeMinTree ts
deleteMin ts = merge (reverse ts1, ts2) where
(Node _ x ts1, ts2) = removeMinTree ts

RB-Trees - 1

```
data Colour = R | B
data Tree a = E | T Colour (Tree a) a (Tree a)
member x E = False
member x (T _ a y b)
    x < y = member x a
    x > y = member x b
    otherwise = True
insert x s = T B a y b where -- root is always black
    ins E = T R E x E -- new node is red
    ins s@(T colour a y b)
            x < y = balance colour (ins a) y b
            x > y = balance colour a y (ins b)
            otherwise = s
    T _ a y b = ins s
```


RB-Trees - 2

```
balance :: Colour -> Tree a -> a -> Tree a -> Tree a
balance B (T R (T R a x b) y c) z d
    = T R (T B a x b) y (T B c z d)
balance B (T R a x (T R b y c)) z d
    = T R (T B a x b) y (T B c z d)
balance B a x (T R (T R b y c) z d)
    = T R (T B a x b) y (T B c z d)
balance B a x (T R b y (T R c z d))
    = T R (T B a x b) y (T B c z d)
balance c t1 a t2 = T c t1 a t2
```


(29)

Balance (1/4)

```
balance :: Colour -> Tree a -> a -> Tree a -> Tree a
balance B (T R (T R a x b) y c) z d
    = T R (T B a x b) y (T B c z d)
balance B (T R a x (T R b y c)) z d
    = T R (T B a x b) y (T B c z d)
balance B a x (T R (T R b y c) z d)
    = T R (T B a x b) y (T B c z d)
balance B a x (T R b y (T R c z d))
    = T R (T B a x b) y (T B c z d)
balance c t1 a t2 = T c t1 a t2
```


Balance (2/4)

```
balance :: Colour -> Tree a -> a -> Tree a -> Tree a
balance B (T R (T R a x b) y c) z d
    = T R (T B a x b) y (T B c z d)
balance B (T R a x (T R b y c)) z d
    = T R (T B a x b) y (T B c z d)
balance B a x (T R (T R b y c) z d)
    = T R (T B a x b) y (T B c z d)
balance B a x (T R b y (T R c z d))
    = T R (T B a x b) y (T B c z d)
balance c t1 a t2 = T c t1 a t2
```


Balance (3/4)

```
balance :: Colour -> Tree a -> a -> Tree a -> Tree a
balance B (T R (T R a x b) y c) z d
    = T R (T B a x b) y (T B c z d)
balance B (T R a x (T R b y c)) z d
    = T R (T B a x b) y (T B c z d)
balance B a x (T R (T R b y c) z d)
    = T R (T B a x b) y (T B c z d)
balance B a x (T R b y (T R c z d))
    = T R (T B a x b) y (T B c z d)
balance c t1 a t2 = T c t1 a t2
```


Balance (4/4)

```
balance :: Colour -> Tree a -> a -> Tree a -> Tree a
balance B (T R (T R a x b) y c) z d
    = T R (T B a x b) y (T B c z d)
balance B (T R a x (T R b y c)) z d
    = T R (T B a x b) y (T B c z d)
balance B a x (T R (T R b y c) z d)
    = T R (T B a x b) y (T B c z d)
balance B a x (T R b y (T R c z d))
    = T R (T B a x b) y (T B c z d)
balance c t1 a t2 = T c t1 a t2
```


Questions?

