
Zippers and Lenses

Daniil Berezun

danya.berezun@gmail.com

2022

Outline for section 1

1 Zippers
Motivation
List Zipper
How to derive a zipper?
Tree Zipper

2 “Optics”
Lens: Motivation
Control.Lens
More on Control.Lens
Prism
Traversal

Immutability and Modification

⋗ Functional data structures are immutable ⇒ hard and expensive to modify
data List a = Nil | Cons a (List a)

update :: List a -> Int -> a -> List a
update Nil _ _= Nil
update (Cons _ xs) n _ = Cons a xs
update (Cons x xs) n a = Cons x $ update a xs

⋗ Let’s construct another data structure s.t.:
• represents the original data structure
• has an ability to navigate through the structure focusing on some sub-structure
• allows efficient modification of the element in focus (aka hole)

Daniil Berezun Zippers and Lenses 2022 1

Immutability and Modification

⋗ Functional data structures are immutable ⇒ hard and expensive to modify
data List a = Nil | Cons a (List a)

update :: List a -> Int -> a -> List a
update Nil _ _= Nil
update (Cons _ xs) n _ = Cons a xs
update (Cons x xs) n a = Cons x $ update a xs

⋗ Let’s construct another data structure s.t.:
• represents the original data structure
• has an ability to navigate through the structure focusing on some sub-structure
• allows efficient modification of the element in focus (aka hole)

Daniil Berezun Zippers and Lenses 2022 1

Immutability and Modification

⋗ Functional data structures are immutable ⇒ hard and expensive to modify
data List a = Nil | Cons a (List a)

update :: List a -> Int -> a -> List a
update Nil _ _= Nil
update (Cons _ xs) n _ = Cons a xs
update (Cons x xs) n a = Cons x $ update a xs

⋗ Let’s construct another data structure s.t.:
• represents the original data structure
• has an ability to navigate through the structure focusing on some sub-structure
• allows efficient modification of the element in focus (aka hole)

. . . • 1 • 2 ◦ 3 ◦ 4 • 5 • . . .

Daniil Berezun Zippers and Lenses 2022 1

Immutability and Modification

⋗ Functional data structures are immutable ⇒ hard and expensive to modify
data List a = Nil | Cons a (List a)

update :: List a -> Int -> a -> List a
update Nil _ _= Nil
update (Cons _ xs) n _ = Cons a xs
update (Cons x xs) n a = Cons x $ update a xs

⋗ Let’s construct another data structure s.t.:
• represents the original data structure
• has an ability to navigate through the structure focusing on some sub-structure
• allows efficient modification of the element in focus (aka hole)

. . . • 1 ◦ 2 ◦ 3 • 4 • 5 • . . .

Daniil Berezun Zippers and Lenses 2022 1

Immutability and Modification

⋗ Functional data structures are immutable ⇒ hard and expensive to modify
data List a = Nil | Cons a (List a)

update :: List a -> Int -> a -> List a
update Nil _ _= Nil
update (Cons _ xs) n _ = Cons a xs
update (Cons x xs) n a = Cons x $ update a xs

⋗ Let’s construct another data structure s.t.:
• represents the original data structure
• has an ability to navigate through the structure focusing on some sub-structure
• allows efficient modification of the element in focus (aka hole)

. . . • 1 • 2 ◦ 3 ◦ 4 • 5 • . . .

Daniil Berezun Zippers and Lenses 2022 1

Immutability and Modification

⋗ Functional data structures are immutable ⇒ hard and expensive to modify
data List a = Nil | Cons a (List a)

update :: List a -> Int -> a -> List a
update Nil _ _= Nil
update (Cons _ xs) n _ = Cons a xs
update (Cons x xs) n a = Cons x $ update a xs

⋗ Let’s construct another data structure s.t.:
• represents the original data structure
• has an ability to navigate through the structure focusing on some sub-structure
• allows efficient modification of the element in focus (aka hole)

. . . • 1 • 2 • 3 ◦ 4 ◦ 5 • . . .

Daniil Berezun Zippers and Lenses 2022 1

Immutability and Modification

⋗ Functional data structures are immutable ⇒ hard and expensive to modify
data List a = Nil | Cons a (List a)

update :: List a -> Int -> a -> List a
update Nil _ _= Nil
update (Cons _ xs) n _ = Cons a xs
update (Cons x xs) n a = Cons x $ update a xs

⋗ Let’s construct another data structure s.t.:
• represents the original data structure
• has an ability to navigate through the structure focusing on some sub-structure
• allows efficient modification of the element in focus (aka hole)

. . . • 1 • 2 ◦ 3

aka hole in context

◦ 4 • 5 • . . .

Daniil Berezun Zippers and Lenses 2022 1

List Zipper: traversing

type ListZipper a = (a, ContextLZ a)
type ContextLZ a = ([a],[a])
-- construct list zipper
makeLZ :: [a] -> ListZipper a
makeLZ (x:xs) = (x,([],xs))
-- move focus forward
forwardLZ :: ListZipper a -> ListZipper a
forwardLZ (e, (xs, y:ys)) = (y, (e:xs, ys))
-- move focus back
backwardLZ :: ListZipper a -> ListZipper a
backwardLZ (a, (x:xs, ys))) = (x, (xs, a:ys))
-- extract list from list zipper
fromLZ :: ListZipper a -> [a]
fromLZ (x, ([], xs)) = x:xs
fromLZ z = fromLZ . backwardLZ $ z

-- usage examples
ghci> lz = makeLZ [0..3]
(0,([],[1,2,3]))
ghci> forward lz
(1,([0],[2,3]))
ghci>let lz' =

(forward . forward) lz
(2,([1,0],[3]))
ghci> backward lz'
(1,([0],[2,3]))
ghci> fromLZ lz'
[0,1,2,3]

Daniil Berezun Zippers and Lenses 2022 2

List Zipper: modify

-- update element in hole
updateLZ :: a -> ListZipper a -> ListZipper a
updateLZ a (_, ctx) = (a, ctx)
-- insert element in hole
insertLZ :: a -> ListZipper a -> ListZipper a
insertLZ a (b, (xs, ys)) = (a, (xs, b:ys))
-- remove element in focus from list
removeLZ :: ListZipper a -> ListZipper a
removeLZ (_, (x:xs, [])) = (x, (xs, []))
removeLZ (_, (xs , y:ys)) = (y, (xs, ys))
-- usage examples:
ghci> fromLZz . updateLZ 22 . fowrwardLZ . fowrwardLZ . makeLZ $ [0..3]
[0,1,22,3]
ghci> fromLZ . insertLZ 11 . insertLZ 10 . forward . forward . makeLZ $ [0..3]
[0,1,11,10,2,3]

Daniil Berezun Zippers and Lenses 2022 3

Remember Types Algebra?

Tuples
type Triple a = (a ,(a,a))
type PairPair a = ((a,a),(a,a))

How many elements of type?
Triple = A ∗ (A ∗ A) = A3

PairPair = (A ∗ A)2 = A4

Zippers
type TripleZ a = (a, CntxTZ a)
data CntxTZ a = CTZ1 a a | CTZ2 a a | CTZ3 a a

type PairPairZ a = (a, CntxPPZ a)
data CntxPPZ a = CPPZ1 a a a | CPPZ2 a a a | CPPZ3 a a a | CPPZ4 a a a

In term of type theory algebra
TripleZ (X) = X3

CntxTZ (X) = X2 + X2 + X2 = 3 ∗ X2

PairPairZ (X) = X4

CntxPPZ (X) = X3 + X3 + X3 + X3 = 4 ∗ X3

derivative!!!

Daniil Berezun Zippers and Lenses 2022 4

Remember Types Algebra?

Tuples
type Triple a = (a ,(a,a))
type PairPair a = ((a,a),(a,a))

How many elements of type?
Triple = A ∗ (A ∗ A) = A3

PairPair = (A ∗ A)2 = A4

Zippers
type TripleZ a = (a, CntxTZ a)
data CntxTZ a = CTZ1 a a | CTZ2 a a | CTZ3 a a

type PairPairZ a = (a, CntxPPZ a)
data CntxPPZ a = CPPZ1 a a a | CPPZ2 a a a | CPPZ3 a a a | CPPZ4 a a a

In term of type theory algebra
TripleZ (X) = X3

CntxTZ (X) = X2 + X2 + X2 = 3 ∗ X2

PairPairZ (X) = X4

CntxPPZ (X) = X3 + X3 + X3 + X3 = 4 ∗ X3

derivative!!!

Daniil Berezun Zippers and Lenses 2022 4

Remember Types Algebra?

Tuples
type Triple a = (a ,(a,a))
type PairPair a = ((a,a),(a,a))

How many elements of type?
Triple = A ∗ (A ∗ A) = A3

PairPair = (A ∗ A)2 = A4

Zippers
type TripleZ a = (a, CntxTZ a)
data CntxTZ a = CTZ1 a a | CTZ2 a a | CTZ3 a a

type PairPairZ a = (a, CntxPPZ a)
data CntxPPZ a = CPPZ1 a a a | CPPZ2 a a a | CPPZ3 a a a | CPPZ4 a a a

In term of type theory algebra
TripleZ (X) = X3

CntxTZ (X) = X2 + X2 + X2 = 3 ∗ X2

PairPairZ (X) = X4

CntxPPZ (X) = X3 + X3 + X3 + X3 = 4 ∗ X3

derivative!!!

Daniil Berezun Zippers and Lenses 2022 4

Remember Types Algebra?

Tuples
type Triple a = (a ,(a,a))
type PairPair a = ((a,a),(a,a))

How many elements of type?
Triple = A ∗ (A ∗ A) = A3

PairPair = (A ∗ A)2 = A4

Zippers
type TripleZ a = (a, CntxTZ a)
data CntxTZ a = CTZ1 a a | CTZ2 a a | CTZ3 a a

type PairPairZ a = (a, CntxPPZ a)
data CntxPPZ a = CPPZ1 a a a | CPPZ2 a a a | CPPZ3 a a a | CPPZ4 a a a

In term of type theory algebra
TripleZ (X) = X3

CntxTZ (X) = X2 + X2 + X2 = 3 ∗ X2

PairPairZ (X) = X4

CntxPPZ (X) = X3 + X3 + X3 + X3 = 4 ∗ X3

derivative!!!

Daniil Berezun Zippers and Lenses 2022 4

Back to Lists

Lists
L(X) = 1+ X+ X2 + X3 + . . .
L(X) = 1+ X ∗ (1+ X+ X2 + X3 + . . .)
L(X) = 1+ X ∗ L(X)

Further
L(X) − X ∗ L(X) = 1
L(X) ∗ (1 − X) = 1
L(X) = 1

1−X

Derivate
L(X) = 1

1−X
L′(X) = 1

(1−X)2
L′(X) = L(X) ∗ L(X)

Derivate: Alternative syntax
L = 1+ X ∗ L
∂L
∂X = ∂

∂X (1+ X ∗ L) = L+ X ∗ ∂L
∂X

∂L
∂X = L

1−X = L2

Our list zipper exactly! (actually, the context)
type ListZ a = (a, CntxL a)
type CntxL a = ([a], [a])
-- or
type ListZipper a = ([a], [a])
-- or
type ListZipper a = ([a], a, [a])

Daniil Berezun Zippers and Lenses 2022 5

Back to Lists

Lists
L(X) = 1+ X+ X2 + X3 + . . .
L(X) = 1+ X ∗ (1+ X+ X2 + X3 + . . .)
L(X) = 1+ X ∗ L(X)

Further
L(X) − X ∗ L(X) = 1
L(X) ∗ (1 − X) = 1
L(X) = 1

1−X

Derivate
L(X) = 1

1−X
L′(X) = 1

(1−X)2
L′(X) = L(X) ∗ L(X)

Derivate: Alternative syntax
L = 1+ X ∗ L
∂L
∂X = ∂

∂X (1+ X ∗ L) = L+ X ∗ ∂L
∂X

∂L
∂X = L

1−X = L2

Our list zipper exactly! (actually, the context)
type ListZ a = (a, CntxL a)
type CntxL a = ([a], [a])
-- or
type ListZipper a = ([a], [a])
-- or
type ListZipper a = ([a], a, [a])

Daniil Berezun Zippers and Lenses 2022 5

Back to Lists

Lists
L(X) = 1+ X+ X2 + X3 + . . .
L(X) = 1+ X ∗ (1+ X+ X2 + X3 + . . .)
L(X) = 1+ X ∗ L(X)

Further
L(X) − X ∗ L(X) = 1
L(X) ∗ (1 − X) = 1
L(X) = 1

1−X

Derivate
L(X) = 1

1−X
L′(X) = 1

(1−X)2
L′(X) = L(X) ∗ L(X)

Derivate: Alternative syntax
L = 1+ X ∗ L
∂L
∂X = ∂

∂X (1+ X ∗ L) = L+ X ∗ ∂L
∂X

∂L
∂X = L

1−X = L2

Our list zipper exactly! (actually, the context)
type ListZ a = (a, CntxL a)
type CntxL a = ([a], [a])
-- or
type ListZipper a = ([a], [a])
-- or
type ListZipper a = ([a], a, [a])

Daniil Berezun Zippers and Lenses 2022 5

Example: Tree Zipper
data Tree a = Leaf | Node A (Tree A) (Tree A)

T (X) = 1+ X ∗ T2(X)

T′(X) = T2(X) + X ∗ 2 ∗ T(X) ∗ T′(X)

T′(X) = T2(X)
1 − 2 ∗ X ∗ T(X)

T′(X) = T2(X) ∗ L(2 ∗ X ∗ T(X))
type TreeZipper a = (a, TreeContext a)
type TreeContext a =

(Tree a, -- left subtree of the hole
Tree a, -- right subtree of the hole
[(-- list of tuples

Bool, -- direction we come from: left or right
a, -- value of the parent node
Tree a -- another subtree of the parent node

)])
-- Alternative definition
type TreeZipper' =

(
Tree a, -- tree in the hole
[(-- list of tuples

Direction, -- left or right subtree of the parent node
a, -- value in the parent node
Tree a -- another child of the parent node

)])

Daniil Berezun Zippers and Lenses 2022 6

Example: Tree Zipper
data Tree a = Leaf | Node A (Tree A) (Tree A)

T (X) = 1+ X ∗ T2(X)

T′(X) = T2(X) + X ∗ 2 ∗ T(X) ∗ T′(X)

T′(X) = T2(X)
1 − 2 ∗ X ∗ T(X)

T′(X) = T2(X) ∗ L(2 ∗ X ∗ T(X))
type TreeZipper a = (a, TreeContext a)
type TreeContext a =

(Tree a, -- left subtree of the hole
Tree a, -- right subtree of the hole
[(-- list of tuples

Bool, -- direction we come from: left or right
a, -- value of the parent node
Tree a -- another subtree of the parent node

)])
-- Alternative definition
type TreeZipper' =

(
Tree a, -- tree in the hole
[(-- list of tuples

Direction, -- left or right subtree of the parent node
a, -- value in the parent node
Tree a -- another child of the parent node

)])

Daniil Berezun Zippers and Lenses 2022 6

Example: Tree Zipper
data Tree a = Leaf | Node A (Tree A) (Tree A)

T (X) = 1+ X ∗ T2(X)

T′(X) = T2(X) + X ∗ 2 ∗ T(X) ∗ T′(X)

T′(X) = T2(X)
1 − 2 ∗ X ∗ T(X)

T′(X) = T2(X) ∗ L(2 ∗ X ∗ T(X))
type TreeZipper a = (a, TreeContext a)
type TreeContext a =

(Tree a, -- left subtree of the hole
Tree a, -- right subtree of the hole
[(-- list of tuples

Bool, -- direction we come from: left or right
a, -- value of the parent node
Tree a -- another subtree of the parent node

)])
-- Alternative definition
type TreeZipper' =

(
Tree a, -- tree in the hole
[(-- list of tuples

Direction, -- left or right subtree of the parent node
a, -- value in the parent node
Tree a -- another child of the parent node

)])

Daniil Berezun Zippers and Lenses 2022 6

Example: Tree Zipper
data Tree a = Leaf | Node A (Tree A) (Tree A)

T (X) = 1+ X ∗ T2(X)

T′(X) = T2(X) + X ∗ 2 ∗ T(X) ∗ T′(X)

T′(X) = T2(X)
1 − 2 ∗ X ∗ T(X)

T′(X) = T2(X) ∗ L(2 ∗ X ∗ T(X))
type TreeZipper a = (a, TreeContext a)
type TreeContext a =

(Tree a, -- left subtree of the hole
Tree a, -- right subtree of the hole
[(-- list of tuples

Bool, -- direction we come from: left or right
a, -- value of the parent node
Tree a -- another subtree of the parent node

)])
-- Alternative definition
type TreeZipper' =

(
Tree a, -- tree in the hole
[(-- list of tuples

Direction, -- left or right subtree of the parent node
a, -- value in the parent node
Tree a -- another child of the parent node

)])

Daniil Berezun Zippers and Lenses 2022 6

Example: Tree Zipper
data Tree a = Leaf | Node A (Tree A) (Tree A)

T (X) = 1+ X ∗ T2(X)

T′(X) = T2(X) + X ∗ 2 ∗ T(X) ∗ T′(X)

T′(X) = T2(X)
1 − 2 ∗ X ∗ T(X)

T′(X) = T2(X) ∗ L(2 ∗ X ∗ T(X))
type TreeZipper a = (a, TreeContext a)
type TreeContext a =

(Tree a, -- left subtree of the hole
Tree a, -- right subtree of the hole
[(-- list of tuples

Bool, -- direction we come from: left or right
a, -- value of the parent node
Tree a -- another subtree of the parent node

)])
-- Alternative definition
type TreeZipper' =

(
Tree a, -- tree in the hole
[(-- list of tuples

Direction, -- left or right subtree of the parent node
a, -- value in the parent node
Tree a -- another child of the parent node

)])

Daniil Berezun Zippers and Lenses 2022 6

Example: Tree Zipper
data Tree a = Leaf | Node A (Tree A) (Tree A)

T (X) = 1+ X ∗ T2(X)

T′(X) = T2(X) + X ∗ 2 ∗ T(X) ∗ T′(X)

T′(X) = T2(X)
1 − 2 ∗ X ∗ T(X)

T′(X) = T2(X) ∗ L(2 ∗ X ∗ T(X))
type TreeZipper a = (a, TreeContext a)
type TreeContext a =

(Tree a, -- left subtree of the hole
Tree a, -- right subtree of the hole
[(-- list of tuples

Bool, -- direction we come from: left or right
a, -- value of the parent node
Tree a -- another subtree of the parent node

)])
-- Alternative definition
type TreeZipper' =

(
Tree a, -- tree in the hole
[(-- list of tuples

Direction, -- left or right subtree of the parent node
a, -- value in the parent node
Tree a -- another child of the parent node

)])

Daniil Berezun Zippers and Lenses 2022 6

Outline for section 2

1 Zippers
Motivation
List Zipper
How to derive a zipper?
Tree Zipper

2 “Optics”
Lens: Motivation
Control.Lens
More on Control.Lens
Prism
Traversal

Lens: Motivation

⋗ Consider some basic data type with getter and setter:

data Athlete = Athlete String

getName :: Athlete -> String
getName (Athlete name) = name

setName :: Athlete -> String -> Athlete
setName (Athlete _) name = Athlete name

⋗ This works, but it’s tedious; Let’s use record syntax instead

data Athlete = Athlete { name :: String }

main :: IO ()
main = putStrLn nameOfRealAthlete where

athleteWithoutName = Athlete ""
realAthlete = athleteWithoutName { name = "Athlete's name" }
nameOfRealAthlete = name realAthlete

⋗ But what happens when we introduce a new data type with the same field name?

Daniil Berezun Zippers and Lenses 2022 7

Lens: Motivation

⋗ Consider some basic data type with getter and setter:

data Athlete = Athlete String

getName :: Athlete -> String
getName (Athlete name) = name

setName :: Athlete -> String -> Athlete
setName (Athlete _) name = Athlete name

⋗ This works, but it’s tedious; Let’s use record syntax instead

data Athlete = Athlete { name :: String }

main :: IO ()
main = putStrLn nameOfRealAthlete where

athleteWithoutName = Athlete ""
realAthlete = athleteWithoutName { name = "Athlete's name" }
nameOfRealAthlete = name realAthlete

⋗ But what happens when we introduce a new data type with the same field name?

Daniil Berezun Zippers and Lenses 2022 7

Lens: Motivation

⋗ Consider some basic data type with getter and setter:

data Athlete = Athlete String

getName :: Athlete -> String
getName (Athlete name) = name

setName :: Athlete -> String -> Athlete
setName (Athlete _) name = Athlete name

⋗ This works, but it’s tedious; Let’s use record syntax instead

data Athlete = Athlete { name :: String }

main :: IO ()
main = putStrLn nameOfRealAthlete where

athleteWithoutName = Athlete ""
realAthlete = athleteWithoutName { name = "Athlete's name" }
nameOfRealAthlete = name realAthlete

⋗ But what happens when we introduce a new data type with the same field name?

Daniil Berezun Zippers and Lenses 2022 7

data Athlete = Athlete { name :: String }
data Club = Club { name :: String }

Error: Multiple
declarations of 'name'

⋗ Even if we will use different files:
-- Athlete.hs
data Athlete = Athlete { name :: String }

-- Club.hs
data Club = Club { name :: String }

-- Main.hs
import Athlete
import Club

blankAthlete = Athlete { name = "" }
-- Ambiguous occurrence `name'
-- It could refer to either `Athlete.name'
-- or `Club.name'

Daniil Berezun Zippers and Lenses 2022 8

data Athlete = Athlete { name :: String }
data Club = Club { name :: String }

Error: Multiple
declarations of 'name'

⋗ Even if we will use different files:
-- Athlete.hs
data Athlete = Athlete { name :: String }

-- Club.hs
data Club = Club { name :: String }

-- Main.hs
import Athlete
import Club

blankAthlete = Athlete { name = "" }
-- Ambiguous occurrence `name'
-- It could refer to either `Athlete.name'
-- or `Club.name'

Daniil Berezun Zippers and Lenses 2022 8

⋗ Ok, let’s use aliases
-- Main.hs
module Main where

import Athlete as A
import Club as C

main :: IO ()
main = putStrLn $ nameOfRealAthlete ++ ", " ++ nameOfRealClub where

athleteWithoutName = Athlete ""
realAthlete = athleteWithoutName { A.name = "A name" }
nameOfRealAthlete = A.name realAthlete
clubWithoutName = Club ""
realClub = clubWithoutName { C.name = "C name" }
nameOfRealClub = C.name realClub

⋗ This may work, but ... module number and aliases can grow!

Daniil Berezun Zippers and Lenses 2022 9

⋗ Ok, let’s use aliases
-- Main.hs
module Main where

import Athlete as A
import Club as C

main :: IO ()
main = putStrLn $ nameOfRealAthlete ++ ", " ++ nameOfRealClub where

athleteWithoutName = Athlete ""
realAthlete = athleteWithoutName { A.name = "A name" }
nameOfRealAthlete = A.name realAthlete
clubWithoutName = Club ""
realClub = clubWithoutName { C.name = "C name" }
nameOfRealClub = C.name realClub

⋗ This may work, but ... module number and aliases can grow!

Daniil Berezun Zippers and Lenses 2022 9

⋗ Fine, let’s use different names for fields

-- Club.hs
module Club where
data Club = Club { clubName :: String }
-- Athlete.hs
module Athlete where
data Athlete = Athlete { athleteName :: String }
-- Main.hs
import Athlete
import Club

main = putStrLn $ nameOfRealAthlete ++ ", " ++ nameOfRealClub where
athleteWithoutName = Athlete ""
realAthlete = athleteWithoutName { athleteName = "A name" }
nameOfRealAthlete = athleteName realAthlete
clubWithoutName = Club ""
realClub = clubWithoutName { clubName = "C name" }
nameOfRealClub = clubName realClub

⋗ Again, works but it is not what we really want

Daniil Berezun Zippers and Lenses 2022 10

⋗ Let’s define a type class instead:

class HasName a where
getName :: a -> String
setName :: String -> a -> a

instance HasName Athlete where
getName athlete = athleteName athlete
setName newName athlete = athlete { athleteName = newName }

instance HasName Club where
getName club = clubName club
setName newName club = club { clubName = newName }

main = putStrLn $ nameOfRealAthlete ++ ", " ++ nameOfRealClub where
athleteWithoutName = Athlete ""
realAthlete = setName "A name" athleteWithoutName
nameOfRealAthlete = getName realAthlete
clubWithoutName = Club ""
realClub = setName "C name" clubWithoutName
nameOfRealClub = getName realClub

Daniil Berezun Zippers and Lenses 2022 11

⋗ Let’s get rid of String; Maybe someone wants to redefine it

{-# LANGUAGE MultiParamTypeClasses, FlexibleInstances #-}
class HasName a b where

getName :: a -> b
setName :: b -> a -> a

instance HasName Athlete Text where
getName athlete = athleteName athlete
setName newName athlete = athlete { athleteName = newName }

instance HasName Club String where
getName club = clubName club
setName newName club = club { clubName = newName }

main = putStrLn $ unpack nameOfRealAthlete ++ ", " ++ nameOfRealClub where
athleteWithoutName = Athlete empty
realAthlete = setName (pack "A name") athleteWithoutName
nameOfRealAthlete = getName realAthlete
clubWithoutName = Club ""
realClub = setName "C name" clubWithoutName
nameOfRealClub = getName realClub

⋗ Can we do better? It’s functional programming: it should be brief and elegant

Daniil Berezun Zippers and Lenses 2022 12

Finally, Lens

{-# LANGUAGE MultiParamTypeClasses, FlexibleInstances #-}

import Data.Text
import Athlete
import Club

data Lens a b = Lens { get :: a -> b
, set :: b -> a -> a}

athleteNameLens :: Lens (Athlete a) a
athleteNameLens = Lens { get = \athlete -> athleteName athlete

, set = \newName athlete -> athlete { athleteName = newName }}
clubNameLens :: Lens Club String
clubNameLens = Lens { get = \club -> clubName club

, set = \newName club -> club { clubName = newName }}
class HasName a b where name :: Lens a b
instance HasName (Athlete a) a where name = athleteNameLens
instance HasName Club String where name = clubNameLens

main = putStrLn $ unpack nameOfRealAthlete ++ ", " ++ nameOfRealClub where
athleteWithoutName = Athlete empty
realAthlete = set name (pack "A name") athleteWithoutName
nameOfRealAthlete = get name realAthlete
clubWithoutName = Club ""
realClub = set name "C name" clubWithoutName
nameOfRealClub = get name realClub

Daniil Berezun Zippers and Lenses 2022 13

Control.Lens

{-# LANGUAGE TemplateHaskell, MultiParamTypeClasses, FlexibleInstances #-}

import Control.Lens
import Data.Text

data Athlete a = Athlete { _athleteName :: a }
makeLenses ''Athlete

data Club = Club { _clubName :: String }
makeLenses ''Club

class HasName a b where name :: Lens' a b

instance HasName (Athlete a) a where name = athleteName

instance HasName Club String where name = clubName

main = putStrLn $ unpack nameOfRealAthlete ++ ", " ++ nameOfRealClub where
athleteWithoutName = Athlete empty
realAthlete = set name (pack "A name") athleteWithoutName
nameOfRealAthlete = view name realAthlete
clubWithoutName = Club ""
realClub = set name "C name" clubWithoutName
nameOfRealClub = view name realClub

Daniil Berezun Zippers and Lenses 2022 14

Even More: FunctionalDependencies

{-# LANGUAGE TemplateHaskell, MultiParamTypeClasses, FlexibleInstances,
FunctionalDependencies #-}

import Control.Lens
import Data.Text

data Athlete a = Athlete { _athleteName :: a }
makeFields ''Athlete

data Club = Club { _clubName :: String }
makeFields ''Club

main = putStrLn $ unpack nameOfRealAthlete ++ ", " ++ nameOfRealClub where
athleteWithoutName = Athlete empty
realAthlete = set name (pack "A name") athleteWithoutName
nameOfRealAthlete = view name realAthlete
clubWithoutName = Club ""
realClub = set name "C name" clubWithoutName
nameOfRealClub = view name realClub

Daniil Berezun Zippers and Lenses 2022 15

More on Control.Lens

_1
ghci> view _1 (1,2)
1
ghci> view _3 (1,2,3)
3

Composition; infix notation
ghci> view (_1 . _2) ((1,2),3)
2
ghci> ((1,2),3) ^. _1
(1,2)
ghci> ((1,2),3) ^. _1 . _2
2

Modification
ghci> set _1 3 (1,2)
(3,2)
ghci> set _1 "Hello" (1,2)
("Hello",2)
ghci> over _1 length ("Hello","World")
(5,"World")

Infix notation
ghci> _1 .~ "Hello" $ (1,2)
("Hello",2)
ghci> (1, 2) & _1 .~ "Hello"
("Hello",2)
ghci> _1 %~ (^2) $ (2,3)
(4,3)

Lens laws
view l (set l v s) ≡ v
set l (view l s) s ≡ s
set l v' (set l v s) ≡ set l v' s

Daniil Berezun Zippers and Lenses 2022 16

More on Control.Lens

_1
ghci> view _1 (1,2)
1
ghci> view _3 (1,2,3)
3

Composition; infix notation
ghci> view (_1 . _2) ((1,2),3)
2
ghci> ((1,2),3) ^. _1
(1,2)
ghci> ((1,2),3) ^. _1 . _2
2

Modification
ghci> set _1 3 (1,2)
(3,2)
ghci> set _1 "Hello" (1,2)
("Hello",2)
ghci> over _1 length ("Hello","World")
(5,"World")

Infix notation
ghci> _1 .~ "Hello" $ (1,2)
("Hello",2)
ghci> (1, 2) & _1 .~ "Hello"
("Hello",2)
ghci> _1 %~ (^2) $ (2,3)
(4,3)

Lens laws
view l (set l v s) ≡ v
set l (view l s) s ≡ s
set l v' (set l v s) ≡ set l v' s

Daniil Berezun Zippers and Lenses 2022 16

Prism

⋗ Prism for sum types is the same as lens for product type

Examples
ghci> preview _Left (Left 1)
Just 1
ghci> preview _Right (Left 1)
Nothing
ghci> review _Left "abc"
Left "abc"

Composition of Lenses and Prisms
ghci> Left (1,2,3) ^? _Left . _2
Just 2
ghci> (Left 1,Left 1,Right "abc")

^? _3 . _Right
Just "abc"
ghci> (Left 1,Left 2,Right "abc")

^? _3 . _Left
Nothing

⋗ Lenss and prisms are closed under
composition

⋗ Composition of prisms and lenses is a
Trevarsal

⋗ Traverse can have a zero, one or more
focuses

Daniil Berezun Zippers and Lenses 2022 17

Prism

⋗ Prism for sum types is the same as lens for product type

Examples
ghci> preview _Left (Left 1)
Just 1
ghci> preview _Right (Left 1)
Nothing
ghci> review _Left "abc"
Left "abc"

Composition of Lenses and Prisms
ghci> Left (1,2,3) ^? _Left . _2
Just 2
ghci> (Left 1,Left 1,Right "abc")

^? _3 . _Right
Just "abc"
ghci> (Left 1,Left 2,Right "abc")

^? _3 . _Left
Nothing

⋗ Lenss and prisms are closed under
composition

⋗ Composition of prisms and lenses is a
Trevarsal

⋗ Traverse can have a zero, one or more
focuses

Daniil Berezun Zippers and Lenses 2022 17

Optics hierarchy

Fold

Traversal

AffineTraversal
(Optics library only)

Prism Lens

Iso

Daniil Berezun Zippers and Lenses 2022 18

Traversal

data Atom = Atom { _element :: String, _point :: Point } deriving (Show)
data Point = Point { _x :: Double, _y :: Double } deriving (Show)
data Molecule = Molecule { _atoms :: [Atom] } deriving (Show)
$(makeLenses ''Atom)
$(makeLenses ''Point)
$(makeLenses ''Molecule)

Daniil Berezun Zippers and Lenses 2022 19

Traversal

data Atom = Atom { _element :: String, _point :: Point } deriving (Show)
data Point = Point { _x :: Double, _y :: Double } deriving (Show)
data Molecule = Molecule { _atoms :: [Atom] } deriving (Show)
$(makeLenses ''Atom)
$(makeLenses ''Point)
$(makeLenses ''Molecule)

Q: What is a lens?
A: a first class getter and setter for a value We
could pretend that it is a record with two fields:

data Lens a b = Lens
{ view :: a -> b
, over :: (b -> b) -> (a -> a)
}

Q: What is a traversal?
A: first class getter and setter for an arbitrary
number of values Think of a traversal as a
record with two fields:
data Traversal' a b = Traversal'

{ toListOf :: a -> [b]
, over :: (b -> b) -> (a -> a)
}

Daniil Berezun Zippers and Lenses 2022 19

Traversal

data Atom = Atom { _element :: String, _point :: Point } deriving (Show)
data Point = Point { _x :: Double, _y :: Double } deriving (Show)
data Molecule = Molecule { _atoms :: [Atom] } deriving (Show)
$(makeLenses ''Atom)
$(makeLenses ''Point)
$(makeLenses ''Molecule)

Q: What is a lens?
A: a first class getter and setter for a value We
could pretend that it is a record with two fields:

data Lens a b = Lens
{ view :: a -> b
, over :: (b -> b) -> (a -> a)
}

Q: What is the type of a lens?
point :: Lens' Atom Point
x :: Lens' Point Double

Q: What is a traversal?
A: first class getter and setter for an arbitrary
number of values Think of a traversal as a
record with two fields:
data Traversal' a b = Traversal'

{ toListOf :: a -> [b]
, over :: (b -> b) -> (a -> a)
}

Q: What is the type of a traversal?
atoms :: Traversal' Molecule [Atom]

Daniil Berezun Zippers and Lenses 2022 19

Traversal

data Atom = Atom { _element :: String, _point :: Point } deriving (Show)
data Point = Point { _x :: Double, _y :: Double } deriving (Show)
data Molecule = Molecule { _atoms :: [Atom] } deriving (Show)
$(makeLenses ''Atom)
$(makeLenses ''Point)
$(makeLenses ''Molecule)

Q: What is a lens?
A: a first class getter and setter for a value We
could pretend that it is a record with two fields:

data Lens a b = Lens
{ view :: a -> b
, over :: (b -> b) -> (a -> a)
}

Q: What is the type of a lens?
point :: Lens' Atom Point
x :: Lens' Point Double
The actual definition of Lens' is:
type Lens' a b =
forall (f :: * -> *). Functor f =>
(b -> f b) -> (a -> f a)

= Lens s s a a
type Lens s t a b =
forall (f :: * -> *). Functor f =>
(a -> f b) -> s -> f t

Q: What is a traversal?
A: first class getter and setter for an arbitrary
number of values Think of a traversal as a
record with two fields:
data Traversal' a b = Traversal'

{ toListOf :: a -> [b]
, over :: (b -> b) -> (a -> a)
}

Q: What is the type of a traversal?
atoms :: Traversal' Molecule [Atom]

The actual definition of Traversal' is:
type Traversal' a b =

forall (f :: * -> *). Applicative f =>
(b -> f b) -> (a -> f a)

= Traversal s s a a
type Traversal s t a b =

forall (f :: * -> *). Applicative f =>
(a -> f b) -> s -> f t

Daniil Berezun Zippers and Lenses 2022 19

Traversal: Example

data Atom = Atom { _element :: String, _point :: Point } deriving (Show)
data Point = Point { _x :: Double, _y :: Double } deriving (Show)
data Molecule = Molecule { _atoms :: [Atom] } deriving (Show)
$(makeLenses ''Atom)
$(makeLenses ''Point)
$(makeLenses ''Molecule)

shiftAtomX :: Atom -> Atom
shiftAtomX = over (point . x) (+ 1)

shiftMoleculeX :: Molecule -> Molecule
shiftMoleculeX = over (atoms . traverse . point . x) (+ 1)

main =
let atom1 = Atom { _element = "C", _point = Point { _x = 1.0, _y = 2.0 } }

atom2 = Atom { _element = "O", _point = Point { _x = 3.0, _y = 4.0 } }
molecule = Molecule { _atoms = [atom1, atom2] }

in do
print $ shiftAtomX atom1
print $ shiftMoleculeX molecule

-- Atom {_element = "C", _point = Point {_x = 2.0, _y = 2.0}}
-- Molecule {_atoms = [Atom {_element = "C", _point = Point {_x = 2.0, _y = 2.0}},
-- Atom {_element = "O", _point = Point {_x = 4.0, _y = 4.0}}]}

Daniil Berezun Zippers and Lenses 2022 20

Consuming Lenses and Traversals

view :: Lens' a b -> a -> b
over :: Lens' a b -> (b -> b) -> a -> a

set :: Lens' a b -> b -> a -> a
set lens b = over lens (_ -> b)

over :: Traversal' a b -> (b -> b) -> a -> a

set :: Traversal' a b -> b -> a -> a
set traversal b = over traversal (_ -> b)

toListOf :: Traversal' a b -> a -> [b]

Operators
prefix infix
view _1 (1,2) (1,2) ^. _1
set _1 7 (1,2) (_1 .~ 7) (1,2)
over _1 (2 *) (1,2) (_1 \%~ (2 *)) (1,2)
toListOf traverse [1..4] [1..4] ^.. traverse
preview traverse [] [] ^? traverse

Daniil Berezun Zippers and Lenses 2022 21

The End

	haskell Zippers
	Motivation
	List Zipper
	How to derive a zipper?
	Tree Zipper

	haskell ``Optics''
	Lens: Motivation
	haskellControl.Lens
	More on haskellControl.Lens
	Prism
	Traversal

