
Zippers and Lenses

Daniil Berezun

danya.berezun@gmail.com

2022



Outline for section 1

1 Zippers
Motivation
List Zipper
How to derive a zipper?
Tree Zipper

2 “Optics”
Lens: Motivation
Control.Lens
More on Control.Lens
Prism
Traversal



Immutability and Modification

⋗ Functional data structures are immutable ⇒ hard and expensive to modify
data List a = Nil | Cons a (List a)

update :: List a -> Int -> a -> List a
update Nil _ _= Nil
update (Cons _ xs) n _ = Cons a xs
update (Cons x xs) n a = Cons x $ update a xs

⋗ Let’s construct another data structure s.t.:
• represents the original data structure
• has an ability to navigate through the structure focusing on some sub-structure
• allows efficient modification of the element in focus (aka hole)
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List Zipper: traversing

type ListZipper a = (a, ContextLZ a)
type ContextLZ a = ([a],[a])
-- construct list zipper
makeLZ :: [a] -> ListZipper a
makeLZ (x:xs) = (x,([],xs))
-- move focus forward
forwardLZ :: ListZipper a -> ListZipper a
forwardLZ (e, (xs, y:ys)) = (y, (e:xs, ys))
-- move focus back
backwardLZ :: ListZipper a -> ListZipper a
backwardLZ (a, (x:xs, ys))) = (x, (xs, a:ys))
-- extract list from list zipper
fromLZ :: ListZipper a -> [a]
fromLZ (x, ([], xs)) = x:xs
fromLZ z = fromLZ . backwardLZ $ z

-- usage examples
ghci> lz = makeLZ [0..3]
(0,([],[1,2,3]))
ghci> forward lz
(1,([0],[2,3]))
ghci>let lz' =

(forward . forward) lz
(2,([1,0],[3]))
ghci> backward lz'
(1,([0],[2,3]))
ghci> fromLZ lz'
[0,1,2,3]
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List Zipper: modify

-- update element in hole
updateLZ :: a -> ListZipper a -> ListZipper a
updateLZ a (_, ctx) = (a, ctx)
-- insert element in hole
insertLZ :: a -> ListZipper a -> ListZipper a
insertLZ a (b, (xs, ys)) = (a, (xs, b:ys))
-- remove element in focus from list
removeLZ :: ListZipper a -> ListZipper a
removeLZ (_, (x:xs, [] )) = (x, (xs, []))
removeLZ (_, (xs , y:ys)) = (y, (xs, ys))
-- usage examples:
ghci> fromLZz . updateLZ 22 . fowrwardLZ . fowrwardLZ . makeLZ $ [0..3]
[0,1,22,3]
ghci> fromLZ . insertLZ 11 . insertLZ 10 . forward . forward . makeLZ $ [0..3]
[0,1,11,10,2,3]
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Remember Types Algebra?

Tuples
type Triple a = (a ,(a,a))
type PairPair a = ((a,a),(a,a))

How many elements of type?
Triple = A ∗ (A ∗ A) = A3

PairPair = (A ∗ A)2 = A4

Zippers
type TripleZ a = (a, CntxTZ a)
data CntxTZ a = CTZ1 a a | CTZ2 a a | CTZ3 a a

type PairPairZ a = (a, CntxPPZ a)
data CntxPPZ a = CPPZ1 a a a | CPPZ2 a a a | CPPZ3 a a a | CPPZ4 a a a

In term of type theory algebra
TripleZ (X) = X3

CntxTZ (X) = X2 + X2 + X2 = 3 ∗ X2

PairPairZ (X) = X4

CntxPPZ (X) = X3 + X3 + X3 + X3 = 4 ∗ X3

derivative!!!
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Back to Lists

Lists
L(X) = 1+ X+ X2 + X3 + . . .
L(X) = 1+ X ∗ (1+ X+ X2 + X3 + . . . )
L(X) = 1+ X ∗ L(X)

Further
L(X) − X ∗ L(X) = 1
L(X) ∗ (1 − X) = 1
L(X) = 1

1−X

Derivate
L(X) = 1

1−X
L′(X) = 1

(1−X)2
L′(X) = L(X) ∗ L(X)

Derivate: Alternative syntax
L = 1+ X ∗ L
∂L
∂X = ∂

∂X (1+ X ∗ L) = L+ X ∗ ∂L
∂X

∂L
∂X = L

1−X = L2

Our list zipper exactly! (actually, the context)
type ListZ a = (a, CntxL a)
type CntxL a = ([a], [a])
-- or
type ListZipper a = ([a], [a])
-- or
type ListZipper a = ([a], a, [a])
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Example: Tree Zipper
data Tree a = Leaf | Node A (Tree A) (Tree A)

T (X) = 1+ X ∗ T2(X)

T′(X) = T2(X) + X ∗ 2 ∗ T(X) ∗ T′(X)

T′(X) = T2(X)
1 − 2 ∗ X ∗ T(X)

T′(X) = T2(X) ∗ L(2 ∗ X ∗ T(X))
type TreeZipper a = (a, TreeContext a)
type TreeContext a =

(Tree a, -- left subtree of the hole
Tree a, -- right subtree of the hole
[( -- list of tuples

Bool, -- direction we come from: left or right
a, -- value of the parent node
Tree a -- another subtree of the parent node

)])
-- Alternative definition
type TreeZipper' =

(
Tree a, -- tree in the hole
[( -- list of tuples

Direction, -- left or right subtree of the parent node
a, -- value in the parent node
Tree a -- another child of the parent node

)])
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Lens: Motivation

⋗ Consider some basic data type with getter and setter:

data Athlete = Athlete String

getName :: Athlete -> String
getName (Athlete name) = name

setName :: Athlete -> String -> Athlete
setName (Athlete _) name = Athlete name

⋗ This works, but it’s tedious; Let’s use record syntax instead

data Athlete = Athlete { name :: String }

main :: IO ()
main = putStrLn nameOfRealAthlete where

athleteWithoutName = Athlete ""
realAthlete = athleteWithoutName { name = "Athlete's name" }
nameOfRealAthlete = name realAthlete

⋗ But what happens when we introduce a new data type with the same field name?
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data Athlete = Athlete { name :: String }
data Club = Club { name :: String }

Error: Multiple
declarations of 'name'

⋗ Even if we will use different files:
-- Athlete.hs
data Athlete = Athlete { name :: String }

-- Club.hs
data Club = Club { name :: String }

-- Main.hs
import Athlete
import Club

blankAthlete = Athlete { name = "" }
-- Ambiguous occurrence `name'
-- It could refer to either `Athlete.name'
-- or `Club.name'
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⋗ Ok, let’s use aliases
-- Main.hs
module Main where

import Athlete as A
import Club as C

main :: IO ()
main = putStrLn $ nameOfRealAthlete ++ ", " ++ nameOfRealClub where

athleteWithoutName = Athlete ""
realAthlete = athleteWithoutName { A.name = "A name" }
nameOfRealAthlete = A.name realAthlete
clubWithoutName = Club ""
realClub = clubWithoutName { C.name = "C name" }
nameOfRealClub = C.name realClub

⋗ This may work, but ... module number and aliases can grow!
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⋗ Fine, let’s use different names for fields

-- Club.hs
module Club where
data Club = Club { clubName :: String }
-- Athlete.hs
module Athlete where
data Athlete = Athlete { athleteName :: String }
-- Main.hs
import Athlete
import Club

main = putStrLn $ nameOfRealAthlete ++ ", " ++ nameOfRealClub where
athleteWithoutName = Athlete ""
realAthlete = athleteWithoutName { athleteName = "A name" }
nameOfRealAthlete = athleteName realAthlete
clubWithoutName = Club ""
realClub = clubWithoutName { clubName = "C name" }
nameOfRealClub = clubName realClub

⋗ Again, works but it is not what we really want
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⋗ Let’s define a type class instead:

class HasName a where
getName :: a -> String
setName :: String -> a -> a

instance HasName Athlete where
getName athlete = athleteName athlete
setName newName athlete = athlete { athleteName = newName }

instance HasName Club where
getName club = clubName club
setName newName club = club { clubName = newName }

main = putStrLn $ nameOfRealAthlete ++ ", " ++ nameOfRealClub where
athleteWithoutName = Athlete ""
realAthlete = setName "A name" athleteWithoutName
nameOfRealAthlete = getName realAthlete
clubWithoutName = Club ""
realClub = setName "C name" clubWithoutName
nameOfRealClub = getName realClub
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⋗ Let’s get rid of String; Maybe someone wants to redefine it

{-# LANGUAGE MultiParamTypeClasses, FlexibleInstances #-}
class HasName a b where

getName :: a -> b
setName :: b -> a -> a

instance HasName Athlete Text where
getName athlete = athleteName athlete
setName newName athlete = athlete { athleteName = newName }

instance HasName Club String where
getName club = clubName club
setName newName club = club { clubName = newName }

main = putStrLn $ unpack nameOfRealAthlete ++ ", " ++ nameOfRealClub where
athleteWithoutName = Athlete empty
realAthlete = setName (pack "A name") athleteWithoutName
nameOfRealAthlete = getName realAthlete
clubWithoutName = Club ""
realClub = setName "C name" clubWithoutName
nameOfRealClub = getName realClub

⋗ Can we do better? It’s functional programming: it should be brief and elegant
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Finally, Lens

{-# LANGUAGE MultiParamTypeClasses, FlexibleInstances #-}

import Data.Text
import Athlete
import Club

data Lens a b = Lens { get :: a -> b
, set :: b -> a -> a}

athleteNameLens :: Lens (Athlete a) a
athleteNameLens = Lens { get = \athlete -> athleteName athlete

, set = \newName athlete -> athlete { athleteName = newName }}
clubNameLens :: Lens Club String
clubNameLens = Lens { get = \club -> clubName club

, set = \newName club -> club { clubName = newName }}
class HasName a b where name :: Lens a b
instance HasName (Athlete a) a where name = athleteNameLens
instance HasName Club String where name = clubNameLens

main = putStrLn $ unpack nameOfRealAthlete ++ ", " ++ nameOfRealClub where
athleteWithoutName = Athlete empty
realAthlete = set name (pack "A name") athleteWithoutName
nameOfRealAthlete = get name realAthlete
clubWithoutName = Club ""
realClub = set name "C name" clubWithoutName
nameOfRealClub = get name realClub
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Control.Lens

{-# LANGUAGE TemplateHaskell, MultiParamTypeClasses, FlexibleInstances #-}

import Control.Lens
import Data.Text

data Athlete a = Athlete { _athleteName :: a }
makeLenses ''Athlete

data Club = Club { _clubName :: String }
makeLenses ''Club

class HasName a b where name :: Lens' a b

instance HasName (Athlete a) a where name = athleteName

instance HasName Club String where name = clubName

main = putStrLn $ unpack nameOfRealAthlete ++ ", " ++ nameOfRealClub where
athleteWithoutName = Athlete empty
realAthlete = set name (pack "A name") athleteWithoutName
nameOfRealAthlete = view name realAthlete
clubWithoutName = Club ""
realClub = set name "C name" clubWithoutName
nameOfRealClub = view name realClub

Daniil Berezun Zippers and Lenses 2022 14



Even More: FunctionalDependencies

{-# LANGUAGE TemplateHaskell, MultiParamTypeClasses, FlexibleInstances,
FunctionalDependencies #-}

import Control.Lens
import Data.Text

data Athlete a = Athlete { _athleteName :: a }
makeFields ''Athlete

data Club = Club { _clubName :: String }
makeFields ''Club

main = putStrLn $ unpack nameOfRealAthlete ++ ", " ++ nameOfRealClub where
athleteWithoutName = Athlete empty
realAthlete = set name (pack "A name") athleteWithoutName
nameOfRealAthlete = view name realAthlete
clubWithoutName = Club ""
realClub = set name "C name" clubWithoutName
nameOfRealClub = view name realClub
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More on Control.Lens

_1
ghci> view _1 (1,2)
1
ghci> view _3 (1,2,3)
3

Composition; infix notation
ghci> view (_1 . _2) ((1,2),3)
2
ghci> ((1,2),3) ^. _1
(1,2)
ghci> ((1,2),3) ^. _1 . _2
2

Modification
ghci> set _1 3 (1,2)
(3,2)
ghci> set _1 "Hello" (1,2)
("Hello",2)
ghci> over _1 length ("Hello","World")
(5,"World")

Infix notation
ghci> _1 .~ "Hello" $ (1,2)
("Hello",2)
ghci> (1, 2) & _1 .~ "Hello"
("Hello",2)
ghci> _1 %~ (^2) $ (2,3)
(4,3)

Lens laws
view l (set l v s) ≡ v
set l (view l s) s ≡ s
set l v' (set l v s) ≡ set l v' s

Daniil Berezun Zippers and Lenses 2022 16



More on Control.Lens

_1
ghci> view _1 (1,2)
1
ghci> view _3 (1,2,3)
3

Composition; infix notation
ghci> view (_1 . _2) ((1,2),3)
2
ghci> ((1,2),3) ^. _1
(1,2)
ghci> ((1,2),3) ^. _1 . _2
2

Modification
ghci> set _1 3 (1,2)
(3,2)
ghci> set _1 "Hello" (1,2)
("Hello",2)
ghci> over _1 length ("Hello","World")
(5,"World")

Infix notation
ghci> _1 .~ "Hello" $ (1,2)
("Hello",2)
ghci> (1, 2) & _1 .~ "Hello"
("Hello",2)
ghci> _1 %~ (^2) $ (2,3)
(4,3)

Lens laws
view l (set l v s) ≡ v
set l (view l s) s ≡ s
set l v' (set l v s) ≡ set l v' s

Daniil Berezun Zippers and Lenses 2022 16



Prism

⋗ Prism for sum types is the same as lens for product type

Examples
ghci> preview _Left (Left 1)
Just 1
ghci> preview _Right (Left 1)
Nothing
ghci> review _Left "abc"
Left "abc"

Composition of Lenses and Prisms
ghci> Left (1,2,3) ^? _Left . _2
Just 2
ghci> (Left 1,Left 1,Right "abc")

^? _3 . _Right
Just "abc"
ghci> (Left 1,Left 2,Right "abc")

^? _3 . _Left
Nothing

⋗ Lenss and prisms are closed under
composition

⋗ Composition of prisms and lenses is a
Trevarsal

⋗ Traverse can have a zero, one or more
focuses
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Optics hierarchy

Fold

Traversal

AffineTraversal
(Optics library only)

Prism Lens

Iso
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Traversal

data Atom = Atom { _element :: String, _point :: Point } deriving (Show)
data Point = Point { _x :: Double, _y :: Double } deriving (Show)
data Molecule = Molecule { _atoms :: [Atom] } deriving (Show)
$(makeLenses ''Atom)
$(makeLenses ''Point)
$(makeLenses ''Molecule)
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Traversal

data Atom = Atom { _element :: String, _point :: Point } deriving (Show)
data Point = Point { _x :: Double, _y :: Double } deriving (Show)
data Molecule = Molecule { _atoms :: [Atom] } deriving (Show)
$(makeLenses ''Atom)
$(makeLenses ''Point)
$(makeLenses ''Molecule)

Q: What is a lens?
A: a first class getter and setter for a value We
could pretend that it is a record with two fields:

data Lens a b = Lens
{ view :: a -> b
, over :: (b -> b) -> (a -> a)
}

Q: What is a traversal?
A: first class getter and setter for an arbitrary
number of values Think of a traversal as a
record with two fields:
data Traversal' a b = Traversal'

{ toListOf :: a -> [b]
, over :: (b -> b) -> (a -> a)
}
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Traversal

data Atom = Atom { _element :: String, _point :: Point } deriving (Show)
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Q: What is a lens?
A: a first class getter and setter for a value We
could pretend that it is a record with two fields:

data Lens a b = Lens
{ view :: a -> b
, over :: (b -> b) -> (a -> a)
}

Q: What is the type of a lens?
point :: Lens' Atom Point
x :: Lens' Point Double
The actual definition of Lens' is:
type Lens' a b =
forall (f :: * -> *). Functor f =>
(b -> f b) -> (a -> f a)

= Lens s s a a
type Lens s t a b =
forall (f :: * -> *). Functor f =>
(a -> f b) -> s -> f t

Q: What is a traversal?
A: first class getter and setter for an arbitrary
number of values Think of a traversal as a
record with two fields:
data Traversal' a b = Traversal'

{ toListOf :: a -> [b]
, over :: (b -> b) -> (a -> a)
}

Q: What is the type of a traversal?
atoms :: Traversal' Molecule [Atom]

The actual definition of Traversal' is:
type Traversal' a b =

forall (f :: * -> *). Applicative f =>
(b -> f b) -> (a -> f a)

= Traversal s s a a
type Traversal s t a b =

forall (f :: * -> *). Applicative f =>
(a -> f b) -> s -> f t
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Traversal: Example

data Atom = Atom { _element :: String, _point :: Point } deriving (Show)
data Point = Point { _x :: Double, _y :: Double } deriving (Show)
data Molecule = Molecule { _atoms :: [Atom] } deriving (Show)
$(makeLenses ''Atom)
$(makeLenses ''Point)
$(makeLenses ''Molecule)

shiftAtomX :: Atom -> Atom
shiftAtomX = over (point . x) (+ 1)

shiftMoleculeX :: Molecule -> Molecule
shiftMoleculeX = over (atoms . traverse . point . x) (+ 1)

main =
let atom1 = Atom { _element = "C", _point = Point { _x = 1.0, _y = 2.0 } }

atom2 = Atom { _element = "O", _point = Point { _x = 3.0, _y = 4.0 } }
molecule = Molecule { _atoms = [atom1, atom2] }

in do
print $ shiftAtomX atom1
print $ shiftMoleculeX molecule

-- Atom {_element = "C", _point = Point {_x = 2.0, _y = 2.0}}
-- Molecule {_atoms = [Atom {_element = "C", _point = Point {_x = 2.0, _y = 2.0}},
-- Atom {_element = "O", _point = Point {_x = 4.0, _y = 4.0}}]}
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Consuming Lenses and Traversals

view :: Lens' a b -> a -> b
over :: Lens' a b -> (b -> b) -> a -> a

set :: Lens' a b -> b -> a -> a
set lens b = over lens (\_ -> b)
---
over :: Traversal' a b -> (b -> b) -> a -> a

set :: Traversal' a b -> b -> a -> a
set traversal b = over traversal (\_ -> b)

toListOf :: Traversal' a b -> a -> [b]

Operators
prefix infix
view _1 (1,2) (1,2) ^. _1
set _1 7 (1,2) (_1 .~ 7) (1,2)
over _1 (2 *) (1,2) (_1 \%~ (2 *)) (1,2)
toListOf traverse [1..4] [1..4] ^.. traverse
preview traverse [] [] ^? traverse
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The End
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