Zippers and Lenses

Daniil Berezun

danya.berezun@gmail.com

2022

Outline for section 1

0 Zippers
@ Motivation

@ List Zipper
@ How to derive a zipper?
@ Tree Zipper

Immutability and Modification

> Functional data structures are immutable = hard and expensive to modify
data List a = Nil | Cons a (List a)

update :: List a -> Int -> a -> List a
update Nil _ _= Nil

update (Cons _ xs) n _
update (Cons X XS) n a

Cons a xs
Cons x $ update a xs

Immutability and Modification

> Functional data structures are immutable = hard and expensive to modify
data List a = Nil | Cons a (List a)

update :: List a -> Int -> a -> List a
update Nil _ _= Nil

update (Cons _ xs) n _ = Cons a Xs

update (Cons x xs) n a = Cons x $ update a xs

> Let’s construct another data structure s.t.:

represents the original data structure
has an ability to navigate through the structure focusing on some sub-structure
allows efficient modification of the element in focus (aka hole)

Immutability and Modification

> Functional data structures are immutable = hard and expensive to modify
data List a = Nil | Cons a (List a)

update :: List a -> Int -> a -> List a
update Nil _ = Nil

update (Cons _ xs) n _
update (Cons x Xs) n a

Cons a xs
Cons x $ update a xs

> Let’'s construct another data structure s.t.:

represents the original data structure
has an ability to navigate through the structure focusing on some sub-structure
allows efficient modification of the element in focus (aka hole)

T2 B ([

Immutability and Modification

> Functional data structures are immutable = hard and expensive to modify
data List a = Nil | Cons a (List a)

update :: List a -> Int -> a -> List a
update Nil _ = Nil

update (Cons _ xs) n _
update (Cons x Xs) n a

Cons a xs
Cons x $ update a xs

> Let’'s construct another data structure s.t.:

represents the original data structure
has an ability to navigate through the structure focusing on some sub-structure
allows efficient modification of the element in focus (aka hole)

k{2 B[]

Immutability and Modification

> Functional data structures are immutable = hard and expensive to modify
data List a = Nil | Cons a (List a)

update :: List a -> Int -> a -> List a
update Nil _ = Nil

update (Cons _ xs) n _
update (Cons x Xs) n a

Cons a xs
Cons x $ update a xs

> Let’'s construct another data structure s.t.:

represents the original data structure
has an ability to navigate through the structure focusing on some sub-structure
allows efficient modification of the element in focus (aka hole)

L T B]

Immutability and Modification

> Functional data structures are immutable = hard and expensive to modify
data List a = Nil | Cons a (List a)

update :: List a -> Int -> a -> List a
update Nil _ = Nil

update (Cons _ xs) n _
update (Cons x Xs) n a

Cons a xs
Cons x $ update a xs

> Let’'s construct another data structure s.t.:

represents the original data structure
has an ability to navigate through the structure focusing on some sub-structure
allows efficient modification of the element in focus (aka hole)

e[2 3[4l 5[]

Immutability and Modification

> Functional data structures are immutable = hard and expensive to modify
data List a = Nil | Cons a (List a)

update :: List a -> Int -> a -> List a
update Nil _ = Nil
update (Cons _ Xxs)
update (Cons Xx Xs)

Cons a xs
Cons x $ update a xs

n
n

a

> Let’s construct another data structure s.t.:

represents the original data structure
has an ability to navigate through the structure focusing on some sub-structure
allows efficient modification of the element in focus (aka hole)

aka hole in context

KN E] S ENETES s V1 Kl e E1 e 221

Daniil Berezun

List Zipper: traversing

type ListZipper a = (a, ContextLZ a)

type ContextLZ a = ([a],[a])

-- construct list zipper

makelLZ :: [a] -> ListZipper a

makeLZ (x:xs) = (x,([]1,xs))

-- move focus forward

forwardLZ :: ListZipper a -> ListZipper a
forwardLZ (e, (xs, y:ys)) = (y, (e:xs, ys))
-- move focus back

backwardLZ :: ListZipper a -> ListZipper a
backwardLZ (a, (x:xs, ys))) = (x, (xs, a:ys))
-- extract list from list zipper

fromLZ :: ListZipper a -> [a]
fromLZ (x, ([], Xs)) = Xx:Xxs
fromLZ z = fromLZ . backwardLZ $ z

Zippers and Lenses

-- usage examples
ghci> 1z = makelLZ [0..3]
(0,(01,11,2,31))
ghci> forward 1z
(1,([01,12,31))
ghci>let 1z' =

(forward . forward) 1z
(2,(01,0],131))
ghci> backward 1z'
(1,(r101,12,31))
ghci> fromLZ 1z'
[0,1,2,3]

2022

List Zipper: modify

-- update element in hole

updatelLZ :: a -> ListZipper a -> ListZipper a
updateLZ a (_, ctx) = (a, ctx)

-- insert element in hole

insertlLZ :: a -> ListZipper a -> ListZipper a
insertlLZ a (b, (xs, ys)) = (a, (xs, b:ys))

-- remove element in focus from list

removelLZ :: ListZipper a -> ListZipper a
removelLZ (_, (x:xs, [1)) (x, (xs, [1))
removelLZ (_, (xs , y:ys)) (y, (xs, ys))

-- usage examples:

ghci> fromLZz . updatelLZ 22 . fowrwardLZ . fowrwardLZ . makeLZ $ [0..3]
[0,1,22,3]

ghci> fromLZ . insertLZ 11 . insertLZ 10 . forward . forward . makeLZ $ [0..3]
[6,1,11,10,2,3]

Remember Types Algebra?

type Triple a = (a ,(a,a)) Triple =Ax(AxA) =A3
type PairPair a PairPair = (AxA)? = A%

In
—
—

Q
Q
-
—
Q
Q
—~
-

Remember Types Algebra?

type Triple a ,(a,a)) Triple =Ax(AxA) =A3
type PairPair a ((a,a),(a,a)) PairPair = (AxA)? =A*

Zippers

(a, CntxTZ a)
CTZ1 a a | CTZ2 a a | CTZ3 a a

type TripleZ a
data CntxTZ a

(a, CntxPPZ a)
CPPZ1 a a a | CPPZ2 a a a | CPPZ3 a a a | CPPZ4 a a a

type PairPairz
data CntxPPZ

v Q
nn

Remember Types Algebra?

type Triple a = (a ,(a,a)) Triple =Ax(AxA) =A3
type PairPair a = ((a,a),(a,a) PairPair = (AxA)? =A*

~

Zippers

(a, CntxTZ a)
CTZ1 a a | CTZ2 a a | CTZ3 a a

type TripleZ a
data CntxTZ a

(a, CntxPPZ a)
CPPZ1 a a a | CPPZ2 a a a | CPPZ3 a a a | CPPZ4 a a a

type PairPairz
data CntxPPZ

v Q
nn

In term of type theory algebra

Triplez X)=Xx3
CntxTZ (X) = X2+ X2+ X2 =3+ X2

PairPairz (X)=X*
txPPZ (X)=X3+ X3+ X0+ X3 =44+X

Remember Types Algebra?

type Triple a = (a ,(a,a)) Triple =Ax(AxA) =A3
type PairPair a = ((a,a),(a,a) PairPair = (AxA)? =A*

~

Zippers

(a, CntxTZ a)
CTZ1 a a | CTZ2 a a | CTZ3 a a

type TripleZ a
data CntxTZ a

(a, CntxPPZ a)
CPPZ1 a a a | CPPZ2 a a a | CPPZ3 a a a | CPPZ4 a a a

type PairPairz
data CntxPPZ

v Q
nn

In term of type theory algebra
Triplez X)=Xx3
CntxTZ (X) = X2 + X2 + X2 =3xX?
derivative!!!

PairPairz (X)=X*
txPPZ (X)=X3+ X3+ X0+ X3 =44+X

Back to Lists

LX) =14+X+X2+X3+... LX) -X«L(X) =1
LX) =14X+(14+X+X2+X3+...) LX)«(1-X) =1
LX) =14+XxL(X) L(X =

Back to Lists

LX) =1+X+X24+X3+... LX)-X+L(X) =1

LX) =14+X+Q+X+X2+X3+...) LX)+«(1-X) =1

LX) =1+X=L(X) L(X) S

Derivate: Alternative syntax
LX) =% L =1+4+X=xL
LX) = % :%(1“(*/_) :L2+X*%
L'(X) =L(X)*L(X) X = 1Ix =L

Zippers and Lenses

2022 @

Back to Lists

LX) =1+X+X24+X3+... LX)-X+L(X) =1
LX) =14+X+Q+X+X2+X3+...) LX)+«(1-X) =1
LX) =1+X=L(X) L(X =
Derivate: Alternative syntax
LX) = L =1+X=«L
LX) = % :%(1+X*L) :L2+X*%
L'(X) =L(X)*L(X) X = 1Ix =L

Our list zipper exactly! (actually, the context)

type ListZ a
type CntxL a
-- or

type ListZipper a
-- or

type ListZipper a

(a, CntxL a)
([al, [al)

(fal, [al)

(fal, a, [al])

Example: Tree Zipper

data Tree a = Leaf | Node A (Tree A) (Tree A)

Example: Tree Zipper

data Tree a = Leaf | Node A (Tree A) (Tree A)
T(X)=1+X+T3(X)

Example: Tree Zipper

data Tree a = Leaf | Node A (Tree A) (Tree A)
TX)=1+X*T?(X)
T'(X) = T2(X) + X 2« T(X) = T'(X)

Example: Tree Zipper

data Tree a = Leaf | Node A (Tree A) (Tree A)

TX) =1+X+T2(X)

T'(X) = T2(X) + X 2« T(X) = T'(X)
T2(X)

T = T2 7%

Example: Tree Zipper

data Tree a = Leaf | Node A (Tree A) (Tree A)
TX)=1+X*T?(X)
T'(X) = T2(X) + X 2« T(X) = T'(X)
_ T2 (X)
1-2+X+T(X)
T (X) = T2(X) = L(2 = X = T(X))
(a, TreeContext a)

T(X)

type TreeZipper a
type TreeContext a

Example: Tree Zipper

data Tree a = Leaf | Node A (Tree A) (Tree A)
TX)=1+X*T?(X)
T'(X) = T2(X) + X 2« T(X) = T'(X)
_ T2(X)
1-2+X+T(X)
T (X) = T2(X) = L(2 = X = T(X))

type TreeZipper a = (a, TreeContext a)
type TreeContext a =

T(X)

(Tree a, -- left subtree of the hole
Tree a, -- right subtree of the hole
[(-- list of tuples
Bool, ~-- direction we come from: left or right
a, -- value of the parent node
Tree a -- another subtree of the parent node

1)

-- Alternative definition

type TreeZipper' =
(
Tree a, -- tree in the hole
[(-- list of tuples
Direction, -- left or right subtree of the parent node
a, -- value in the parent node
Tree a -- another child of the parent node

Outline for section 2

e “Optics”

Lens: Motivation
Control.Lens

More on Control.Lens
Prism

Traversal

Lens: Motivation

> Consider some basic data type with getter and setter:

data Athlete = Athlete String

getName :: Athlete -> String
getName (Athlete name) = name

setName :: Athlete -> String -> Athlete
setName (Athlete _) name = Athlete name

Lens: Motivation

> Consider some basic data type with getter and setter:

data Athlete = Athlete String

getName :: Athlete -> String
getName (Athlete name) = name

setName :: Athlete -> String -> Athlete
setName (Athlete _) name = Athlete name

> This works, but it's tedious; Let's use record syntax instead
data Athlete = Athlete { name :: String }

main :: I0 ()
main = putStrLn nameOfRealAthlete where

athleteWithoutName = Athlete ""
realAthlete = athleteWithoutName { name = "Athlete's name" }
nameOfRealAthlete = name realAthlete

Lens: Motivation

> Consider some basic data type with getter and setter:

data Athlete = Athlete String

getName :: Athlete -> String
getName (Athlete name) = name

setName :: Athlete -> String -> Athlete
setName (Athlete _) name = Athlete name

> This works, but it's tedious; Let's use record syntax instead
data Athlete = Athlete { name :: String }

main :: I0 ()
main = putStrLn nameOfRealAthlete where

athleteWithoutName = Athlete ""
realAthlete = athleteWithoutName { name = "Athlete's name" }
nameOfRealAthlete = name realAthlete

> But what happens when we introduce a new data type with the same field name?

data Athlete = Athlete { name :: String } Error: Multiple.
data Club = Club { name :: String } declarations of ‘'name’

data Athlete = Athlete { name :: String }
data Club = Club { name :: String }

> Even if we will use different files:

-- Athlete.hs
data Athlete = Athlete { name :: String }

-- Club.hs
data Club = Club { name :: String }

-- Main.hs
import Athlete
import Club

blankAthlete = Athlete { name = "" }

-- Ambiguous occurrence ‘name'

-- It could refer to either ‘Athlete.name'
-- or “Club.name'

Error: Multiple
declarations of

"name’

2022

> Ok, let’s use aliases

-- Main.hs
module Main where

import Athlete as A
import Club as C

main :: I0 ()

main = putStrLn $ nameOfRealAthlete ++ ", " ++ nameOfRealClub where
athleteWithoutName = Athlete ""
realAthlete = athleteWithoutName { A.name = "A name" }
nameOfRealAthlete = A.name realAthlete
clubWithoutName = Club ""
realClub = clubWithoutName { C.name = "C name" }
nameOfRealClub = C.name realClub

> Ok, let’s use aliases

-- Main.hs
module Main where

import Athlete as A
import Club as C

main :: I0 ()

main = putStrLn $ nameOfRealAthlete ++ ", " ++ nameOfRealClub where
athleteWithoutName = Athlete ""
realAthlete = athleteWithoutName { A.name = "A name" }
nameOfRealAthlete = A.name realAthlete
clubWithoutName = Club ""
realClub = clubWithoutName { C.name = "C name" }
nameOfRealClub = C.name realClub

> This may work, but ... module number and aliases can grow!

> Fine, let’s use different names for fields

-- Club.hs

module Club where

data Club = Club { clubName :: String }

-- Athlete.hs

module Athlete where

data Athlete = Athlete { athleteName :: String }
-- Main.hs

import Athlete

import Club

main = putStrLn $ nameOfRealAthlete ++ ", " ++ nameOfRealClub where
athleteWithoutName = Athlete ""
realAthlete = athleteWithoutName { athleteName = "A name" }
nameOfRealAthlete = athleteName realAthlete
clubWithoutName = Club ""
realClub = clubWithoutName { clubName = "C name" }
nameOfRealClub = clubName realClub

> Again, works but it is not what we really want

> Let’s define a type class instead:

class HasName a where
getName :: a -> String

setName :: String -> a -> a

instance HasName Athlete where

getName athlete = athleteName athlete

setName newName athlete =

instance HasName Club where

athlete { athleteName = newName }

getName club = clubName club
setName newName club = club { clubName = newName }

main = putStrLn $ nameOfRealAthlete ++ ", " ++ nameOfRealClub where
athleteWithoutName = Athlete ""
realAthlete = setName "A name" athleteWithoutName
nameOfRealAthlete = getName realAthlete
clubWithoutName = Club ""
realClub = setName "C name" clubWithoutName
nameOfRealClub = getName realClub

Daniil Berezun

Zippers and Lenses

2022 @

> Let’s get rid of String; Maybe someone wants to redefine it

{-# LANGUAGE MultiParamTypeClasses, FlexibleInstances #-}
class HasName a b where

getName :: a -> b

setName :: b -> a -> a

instance HasName Athlete Text where
getName athlete = athleteName athlete
setName newName athlete = athlete { athleteName = newName }

instance HasName Club String where
getName club = clubName club
setName newName club = club { clubName = newName }

main = putStrLn $ unpack nameOfRealAthlete ++ ", " ++ nameOfRealClub where
athleteWithoutName = Athlete empty
realAthlete = setName (pack "A name") athleteWithoutName
nameOfRealAthlete = getName realAthlete
clubWithoutName = Club ""
realClub = setName "C name" clubWithoutName
nameOfRealClub = getName realClub

> Can we do better? It’s functional programming: it should be brief and elegant

Finally,

{-# LANGUAGE MultiParamTypeClasses, FlexibleInstances #-}

import Data.Text
import Athlete
import Club

data Lens a b = Lens { get :: a -> b

, set :: b ->a -> a}
athleteNamelLens :: Lens (Athlete a) a
athleteNamelLens = Lens { get = \athlete -> athleteName athlete

, set = \newName athlete -> athlete { athleteName = newName }}

clubNameLens :: Lens Club String
clubNameLens = Lens { get = \club -> clubName club

, set = \newName club -> club { clubName = newName }}
class HasName a b where name :: Lens a b
instance HasName (Athlete a) a where name = athleteNamelens
instance HasName Club String where name = clubNamelLens

main = putStrLn $ unpack nameOfRealAthlete ++ ", " ++ nameOfRealClub where
athleteWithoutName = Athlete empty
realAthlete = set name (pack "A name") athleteWithoutName
nameOfRealAthlete = get name realAthlete
clubWithoutName = Club ""
realClub = set name "C name" clubWithoutName
nameOfRealClub = get name realClub

{-# LANGUAGE TemplateHaskell, MultiParamType(Classes, FlexibleInstances #-}

import Control.Lens
import Data.Text

data Athlete a = Athlete { athleteName :: a }
makeLenses '‘'Athlete

data Club = Club { clubName :: String }
makeLenses ''Club

class HasName a b where name :: Lens' a b
instance HasName (Athlete a) a where name = athleteName
instance HasName Club String where name = clubName

main = putStrLn $ unpack nameOfRealAthlete ++ ", " ++ nameOfRealClub where
athleteWithoutName = Athlete empty

realAthlete = set name (pack "A name") athleteWithoutName
nameOfRealAthlete = view name realAthlete

clubWithoutName = Club ""

realClub = set name "C name" clubWithoutName
nameOfRealClub = view name realClub

Even More: FunctionalDependencies

{-# LANGUAGE TemplateHaskell, MultiParamTypeClasses, FlexibleInstances,
FunctionalDependencies #-}

import Control.Lens
import Data.Text

data Athlete a = Athlete { athleteName :: a }
makeFields ''Athlete

data Club = Club { clubName :: String }
makeFields ''Club

main = putStrLn $ unpack nameOfRealAthlete ++ ", " ++ nameOfRealClub where
athleteWithoutName = Athlete empty

realAthlete = set name (pack "A name") athleteWithoutName
nameOfRealAthlete = view name realAthlete

clubWithoutName = Club ""

realClub = set name "C name" clubWithoutName
nameOfRealClub = view name realClub

More on

ghci> view 1 (1,2)
1
ghci> view 3 (1,2,3)

|uJ

Composition; infix notation

ghci> view (1 . 2) ((1,2),
2

ghci> ((1,2),3) ~. _1

(1,2)

ghci> ((1,2),3) ~. 1. 2
2

Daniil Berezun

3)

Modification

ghci> set 1 3 (1,2)

(3,2)

ghci> set 1 "Hello" (1,2)

("Hello",2)

ghci> over 1 length ("Hello", "World")
(5,"World")

Infix notation

ghci> 1 .~ "Hello" $ (1,2)
("Hello",2)

ghci> (1, 2) & 1 .~ "Hello"
("Hello",2)

ghci> 1 %~ (72) $ (2,3)
(4,3)

Zippers and Lenses 2022 @

More on

1

ghci> view 1 (1,2)
1
ghci> view 3 (1,2,3)

|uJ

Composition; infix notation

ghci> view (.1 . 2)
2

ghci> ((1,2),3) ~. 1
(1,2)

ghci> ((1,2),3) ~. 1.

2

Lens laws

((1,2),3)

2

view 1

set 1 v'

Daniil Berezun

(set 1 v s)
set 1 (view 1 s) s
(set 1 v s)

Zippers and Lenses 2022 @

Modification

ghci> set 1 3 (1,2)

(3,2)

ghci> set 1 "Hello" (1,2)

("Hello",2)

ghci> over 1 length ("Hello", "World")
(5,"World")

Infix notation

ghci> 1 .~ "Hello" $ (1,2)
("Hello",2)

ghci> (1, 2) & 1 .~ "Hello"
("Hello",2)

ghci> 1 %~ (72) $ (2,3)
(4,3)

Vv
S
set L v' s

Prism

> Prism for sum types is the same as lens for product type

Examples
ghci> preview Left (Left 1)

Just 1

ghci> preview Right (Left 1)
Nothing

ghci> review Left "abc"

Left "abc"

Prism

> Prism for sum types is the same as lens for product type

ghci> preview Left (Left 1) ghci> Left (1,2,3) ~7? Left . 2
Just 1 Just 2
ghci> preview Right (Left 1) ghci> (Left 1,Left 1,Right "abc")
Nothing ~? 3 . Right
ghci> review Left "abc" Just "abc"
Left "abc" ghci> (Left 1,Left 2,Right "abc")

~? 3 . Left

Nothing

> Lenss and prisms are closed under
composition

> Composition of prisms and lenses is a
Trevarsal

> Traverse can have a zero, one or more
focuses

Optics hierarchy

Fold
Traversal

AffineTraversal
(Optics library only)

Traversal

data Atom = Atom { _element :: String, point :: Point } deriving (Show)
data Point = Point { x :: Double, y :: Double } deriving (Show)
data Molecule = Molecule { atoms :: [Atom] } deriving (Show)

$(makeLenses ''Atom)
$(makeLenses ''Point)
$(makeLenses ''Molecule)

Traversal

data Atom = Atom { _element :: String, point :: Point } deriving (Show)
data Point = Point { x :: Double, y :: Double } deriving (Show)
data Molecule = Molecule { atoms :: [Atom] } deriving (Show)

$(makeLenses ''Atom)
$(makeLenses ''Point)
$(makeLenses ''Molecule)

Q: What is a lens? Q: What is a traversal?

A: a first class getter and setter for a value We A: first class getter and setter for an arbitrary
could pretend that it is a record with two fields: number of values Think of a traversal as a
record with two fields:
data Lens a b = Lens data Traversal' a b = Traversal'
{ view :: a -> b { toListOf :: a -> [b]
, over :: (b ->b) -> (a -> a) , over :t (b ->b) -> (a -> a)
} }

Traversal

data Atom = Atom { _element :: String, point :: Point } deriving (Show)
data Point = Point { x :: Double, vy :: Double } deriving (Show)
data Molecule = Molecule { atoms :: [Atom] } deriving (Show)

$(makeLenses ''Atom)
$(makeLenses ''Point)
$(makeLenses ''Molecule)

Q: What is a lens? Q: What is a traversal?
A: a first class getter and setter for a value We A: first class getter and setter for an arbitrary
could pretend that it is a record with two fields: number of values Think of a traversal as a
record with two fields:
data Lens a b = Lens data Traversal' a b = Traversal'
{ view :: a -> b { toListOf :: a -> [b]
, over :: (b ->b) -> (a -> a) , over it (b ->b) -> (a -> a)
} }
Q: What is the type of a lens? Q: What is the type of a traversal?
point :: Lens' Atom Point atoms :: Traversal' Molecule [Atom]
X :: Lens' Point Double

Traversal

data Atom = Atom { _element :: String, point :: Point } deriving (Show)
data Point = Point { x :: Double, y :: Double } deriving (Show)
data Molecule = Molecule { _atoms :: [Atom] } deriving (Show)

$(makeLenses ' 'Atom)
$(makeLenses ''Point)
$(makeLenses ''Molecule)

Q: What is a lens? Q: What is a traversal?
A: a first class getter and setter for a value We A: first class getter and setter for an arbitrary
could pretend that it is a record with two fields: number of values Think of a traversal as a
record with two fields:
data Lens a b = Lens data Traversal' a b = Traversal'
{ view :: a -> b { toListOf :: a -> [b]
, over :: (b =>Db) -> (a -> a) , over it (b ->b) -> (a -> a)
} }
Q: What is the type of a lens? Q: What is the type of a traversal?
point :: Lens' Atom Point atoms :: Traversal' Molecule [Atom]
X :: Lens' Point Double
The actual definition of Lens"' is: The actual definition of Traversal' is
type Lens' a b = type Traversal' a b =
forall (f :: * -> *). Functor f => forall (f :: * -> *). Applicative f =>
(b -> f b) -> (a ->f a) (b -> fb) ->(a ->f a)
= lens s s a a = Traversal s s a a
type Lens s t a b = type Traversal s t a b =
forall (f :: * -> *). Functor f => forall (f :: * -> *). Applicative f =>
(a ->fb) ->s5 ->°ft (a -=>fb) ->s5 ->ft

Traversal: Example

data Atom = Atom { _element :: String, point :: Point } deriving (Show)
data Point = Point { x :: Double, y :: Double } deriving (Show)
data Molecule = Molecule { _atoms :: [Atom] } deriving (Show)

$(makeLenses ''Atom)
$(makeLenses ''Point)
$(makeLenses ''Molecule)

shiftAtomX :: Atom -> Atom
shiftAtomX = over (point . x) (+ 1)

shiftMoleculeX :: Molecule -> Molecule
shiftMoleculeX = over (atoms . traverse . point . x) (+ 1)

main =
let atoml = Atom { element = "C", point = Point { x =1.0, y=2.0} }
atom2 = Atom { element = "0", point = Point { x = 3.0, y =4.01}}
molecule = Molecule { atoms = [atoml, atom2] }
in do
print $ shiftAtomX atoml
print $ shiftMoleculeX molecule
-- Atom { element = "C", point = Point { x =2.0, y = 2.0}}
- Molecule { atoms = [Atom { element = "C", point = Point { x =2.0, y = 2.0}},
-- Atom { element = "0", point = Point { x = 4.0, y = 4.0}}]}

Consuming Lenses and Traversals

view :: Lens' a b ->a ->b

over :: Lens' a b -> (b ->b) ->a ->a

set :: Lens' a b -> b ->a ->a

set lens b = over lens (_ -> b)

over :: Traversal' a b -> (b ->b) ->a -> a

set :: Traversal' a b
set traversal b = over

-> b ->a -> a
traversal (_ -> b)

toListOf :: Traversal' a b -> a -> [b]
prefix infix
view 1 (1,2) (1,2) ~. 1
set 17 (1,2) (1 .~7) (1,2)
over 1 (2 *) (1,2) (1 \%~ (2 *))

toListOf traverse [1..4] [I..4] ~.. traverse
preview traverse []

Daniil Berezun

[1 °? traverse

Zippers and Lenses

2022 @

The End

	haskell Zippers
	Motivation
	List Zipper
	How to derive a zipper?
	Tree Zipper

	haskell ``Optics''
	Lens: Motivation
	haskellControl.Lens
	More on haskellControl.Lens
	Prism
	Traversal

